, Volume 61, Issue 2, pp 173-198

Contribution of amino compounds to dissolved organic nitrogen in forest soils

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


Dissolved organic nitrogen (DON) may play an important role in plantnutrition and nitrogen fluxes in forest ecosystems. In spite of the apparentimportance of DON, there is a paucity of information concerning its chemicalcomposition. However, it is exactly this chemical characterization that isrequired to understand the importance of DON in ecosystem processes. Theprimaryobjective of this study was to characterize the distribution of free aminoacidsand hydrolyzable peptides/proteins in the DON fraction of Oa horizon leachatesalong an extreme edaphic gradient in northern California. Insitu soil solutions were extracted by centrifugation from Oahorizonscollected beneath Pinus muricata (Bishop pine) andCupressus pygmaea (pygmy cypress) on slightlyacidic/fertile and highly acidic/infertile sites. DON accounted for 77 to99% of the total dissolved nitrogen in Oa horizon leachates. Nitrogen infree amino acids and alkyl amines ranged from 0.04–0.07 mgN/L on the low fertility site to 0.45–0.49 mg N/L onthe high fertility site, and accounted for 1.5 to 10.6% of the DON fraction.Serine, glutamic acid, leucine, ornithine, alanine, aspartic acid andmethylamine were generally the most abundant free amino compounds. Combinedamino acids released by acid hydrolysis accounted for 48 to 74% of theDON, suggesting that proteins and peptides were the main contributor to DON inOa horizon leachates. Together, nitrogen from free andcombined amino compounds accounted for 59 to 78% of the DON. Most of theDON was found in the hydrophobic fraction, which suggests the presence ofprotein/peptide-polyphenol complexes or amino compounds associated withhumic substances. Because free and combined amino acids can be an importantnitrogen source for some plants, soil DON may play an important role in plantnutrition and ecosystem function.