Skip to main content
Log in

Protective role of magnesium in cardiovascular diseases: A review

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

A considerable number of experimental, epidemiological and clinical studies are now available which point to an important role of Mg2+ in the etiology of cardiovascular pathology. In human subjects, hypomagnesemia is often associated with an imbalance of electrolytes such as Na+, K+ and Ca2+. Abnormal dietary deficiency of Mg2+ as well as abnormalities in Mg2+ metabolism play important roles in different types of heart diseases such as ischemic heart disease, congestive heart failure, sudden cardiac death, atheroscelerosis, a number of cardiac arrhythmias and ventricular complications in diabetes mellitus. Mg2+ deficiency results in progressive vasoconstriction of the coronary vessels leading to a marked reduction in oxygen and nutrient delivery to the cardiac myocytes.

Numerous experimental and clinical data have suggested that Mg2+ deficiency can induce elevation of intracellular Ca2+ concentrations, formation of oxygen radicals, proinflammatory agents and growth factors and changes in membrane permeability and transport processes in cardiac cells. The opposing effects of Mg2+ and Ca2+ on myocardial contractility may be due to the competition between Mg2+ and Ca2+ for the same binding sites on key myocardial contractile proteins such as troponin C, myosin and actin.

Stimulants, for example, catecholamines can evoke marked Mg2+ efflux which appears to be associated with a concomitant increase in the force of contraction of the heart. It has been suggested that Mg2+ efflux may be linked to the Ca2+ signalling pathway. Depletion of Mg2+ by alcohol in cardiac cells causes an increase in intracellular Ca2+, leading to coronary artery vasospasm, arrhythmias, ischemic damage and cardiac failure. Hypomagnesemia is commonly associated with hypokalemia and occurs in patients with hypertension or myocardial infarction as well as in chronic alcoholism.

The inability of the senescent myocardium to respond to ischemic stress could be due to several reasons. Mg2+ supplemented K+ cardioplegia modulates Ca2+ accumulation and is directly involved in the mechanisms leading to enhanced post ischemic functional recovery in the aged myocardium following ischemia. While many of these mechanisms remain controversial and in some cases speculative, the beneficial effects related to consequences of Mg2+ supplementation are apparent. Further research are needed for the incorporation of these findings toward the development of novel myocardial protective role of Mg2+ to reduce morbidity and mortality of patients suffering from a variety of cardiac diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Witte KK, Clark AL, Cleland JG: Chronic heart failure and micronutrients. J Am Coll Cardiol 37: 1765–1774, 2001

    Google Scholar 

  2. Sharikabad MN, Ostbye KM, Lyberg T, Brors O: Effect of extracellular Mg2+ on ROS and Ca2+ accumulation during reoxygenation of rat cardiomyocytes. Am J Physiol (Heart Circ Physiol) 280: H344–H353, 2001

    Google Scholar 

  3. Gazmuri RJ, Hoffner E, Kalcheim J, Ho H, Patel M, Ayoub IM, Epstein M, Kingston S, Han Y: Myocardial protection during ventricular fibrillation by reduction of proton-driven sarcolemmal sodium influx. J Lab Clin Med 137: 43–55, 2001

    Google Scholar 

  4. Abdulla M, Behbehani A, Dasthi H: Dietary intake and bioavailability of trace elements. Biol Trace Elem Res 21: 173–178, 1989

    Google Scholar 

  5. Singh J, Hustler BI, Waring JJ, Howarth FC: Dietary and physiological studies to investigate the relationship between calcium and magnesium signalling in the mammalian myocardium. Mol Cell Biochem 176: 127–134, 1997

    Google Scholar 

  6. Altura BM, Altura BT: New perspectives on the role of magnesium in the pathophysiology of the cardiovascular system. I. Clinical aspects. Magnesium 4: 226–244, 1985

    Google Scholar 

  7. Wester PO, Dyckner T: Problems with potassium and magnesium in diuretic-treated patients. Acta Pharmacol Toxicol (Copenh) 54(Suppl 1): 59–65, 1984

    Google Scholar 

  8. Liao F, Folsom AR, Brancati FL: Is low magnesium concentration a risk factor for coronary heart disease? The atherosclerosis risk in communities (ARIC) study. Am Heart J 136: 480–490, 1998

    Google Scholar 

  9. Hampton EM, Whang DD, Whang R: Intravenous magnesium therapy in acute myocardial infarction. Ann Pharmacother 28: 212–219, 1994

    Google Scholar 

  10. Durlach J, Bara M, Bara-Guiet A: Magnesium level in drinking water: Its importance in cardiovascular risk. In: Y. Itovawa, J. Durlach (eds). Magnesium in Health and Disease. John Libby &; Co. Ltd., 1989, pp 173–182

  11. Kobayashi J: Geographical relation between the chemical nature of river water and death rate from apoplexy. Ber ohara Inst landwirtsch Biol 11: 12–21, 1957

    Google Scholar 

  12. Schroeder HA: Relations between mortality from cardiovascular disease and treated water supplies. J Am Med Assoc 172: 1902–1908, 1960

    Google Scholar 

  13. Seelig MS, Heggtweit HA: Magnesium interrelationships in ischemic heart disease: A review. Am J Clin Nutr 24: 59–79, 1974

    Google Scholar 

  14. Marier JR: The importance of dietary magnesium with particular reference to humans. Z Vitalstoffe Zivilizationskrankheiten 13: 144–149, 1968

    Google Scholar 

  15. Neri LC, Hewitt D, Schreiber GB, Anderson TW, Mandel JS, Zdrojewsney A: Health aspects of hard and soft waters. J Am Water Works Assoc 67: 403–409, 1975

    Google Scholar 

  16. Karppanen H, Neuvonen PJ: Ischemic heart disease and soil magnesium in Finland. Lancet Dec 15: 1390, 1973

    Google Scholar 

  17. Kurki M: Suomen peltojen viljavuudesta II (on the fertility of the cultivated soils in Finland) Helsinki. Yhteiskirjapaino Oy, 1972, pp 1–182

  18. Abdulla M, Behbehani A, Bashti H: In: Y. Itokawa, J. Durlach (eds). Magnesium in Health and Disease. John Libby and Co. Ltd., London, 1989, pp 111–117

    Google Scholar 

  19. Dorup L, Skajaa K, Thybo NK: Oral magnesium supplementation restores the concentration of magnesium, potassium and sodium potassium pumps in skeletal muscle of patients receiving diuretic treatment. J Intern Med 233: 117–123, 1993

    Google Scholar 

  20. Bloom S: Myocardial injury in magnesium deficiency. In: Y. Yotakawa, J. Durlachy (eds). Magnesium in Health and Disease. John Libbey& Co. Ltd., London, 1989, pp 191–197

    Google Scholar 

  21. Williams GH: Hypertensive vascular disease. In: A.S. Fauci, E. Braunwald, K.J. Isselbacher, J.D. Wilson, J.B. Martin, D.L. Kasper et al. (eds). Harrisons Principles of Internal Medicine, vol. 1, 14th ed. McGraw-Hill, New York, 1998, pp 1380–1394

    Google Scholar 

  22. Touyz RM, Laurant P, Schiffri EL: Effect of magnesium on calcium responses to vasopressin in vascular smooth muscle cells to spontaneously hypertensive rats. J Pharmacol Exp Ther 284: 998–1005, 1998

    Google Scholar 

  23. Kh R, Khullar M, Kashyap M, Pandlu P, Uppal R: Effect of oral magnesium supplementation on blood pressure, platelet aggregation and calcium handling in deoxycortisone acetate induced hypertension in rats. J Hypertens 18: 919–926, 2000

    Google Scholar 

  24. Berthelot A, Luthringer C, Meyers E, Exinger A: Disturbance of magnesium metabolism in the spontaneously hypertensive rat. J Am Coll Nutr 6: 329–332, 1997

    Google Scholar 

  25. Tomita T, Umegaki K, Hayashi E: The appearance of the exhausted platelets due to a duration of hypertension in stroke prone spontaneously hypertensive rats. Thromb Res 37: 195–200, 1985

    Google Scholar 

  26. Lockette WG, Otsuka Y, Cemetero OA: The loss of endothelium dependent vascular relaxation in hypertension. Hypertensin 8(Suppl 2): 1161–1166, 1986

    Google Scholar 

  27. Laurant P, Dalle M, Berthelot A, Rayssiguier Y: Time courses of the change in blood pressure level in magnesium deficient Wistar rats. Br J Nutr 82: 243–251, 1999

    Google Scholar 

  28. Abbot LG, Rude RK: Clinical manifestations of magnesium deficiency. Miner Electrolyte Metab 19: 314–322, 1993

    Google Scholar 

  29. Parikka H, Toivonen L, Naukkarinen V, Tierala I, Pohjola-Sintonen S, Heikkila J, Nieminen MS: Decreases by magnesium of QT dispersion and ventricular arrhythmias in patients with acute myocardial infarction. Eur Heart J 20: 111–120, 1999

    Google Scholar 

  30. Llaurant P, Dalle M, Berthelot A, Rayssiguier Y: Time-course of the change in blood pressure level in magnesium-deficient Wistar rats. Br J Nutr 82: 243–251, 1999

    Google Scholar 

  31. Fakunding JL, Chow R, Catt KJ: The role of calcium in the stimulation of aldosterone production by adrenocorticotropin, angiotensin II, and potassium in isolated glomerulosa cells. Endocrinology 105: 327–333, 1979

    Google Scholar 

  32. Ichihara A, Suzuki H, Saruta T: Effects of magnesium on the reninangiotensin-aldosterone system in human subjects. J Lab Clin Med 122: 432–440, 1993

    Google Scholar 

  33. Quinn SJ, Williams GH: Regulation of aldosterone secretion. Annu Rev Physiol 50: 409–426, 1988

    Google Scholar 

  34. Altura BM, Gebrewold A, Altura BT, Brautbar N: Magnesium depletion impairs myocardial carbohydrate and lipid metabolism and cardiac bioenergetics and raises myocardial calcium content in vivo: Relationship to etiology of cardiac diseases. Biochem Mol Biol Int 40: 1183–1190, 1996

    Google Scholar 

  35. Guerrero-Romero F, Rodriguez-Moran M: Hypomagnesemia is linked to low serum HDL-cholesterol irrespective of serum glucose values. J Diab Comp 14: 272–276, 2000

    Google Scholar 

  36. Wiles Me, Wagner TL, Weglicki WB: Effect of acute magnesium deficiency (MgD) on aortic endothelial cell (EC) oxidant production. Life Sci 60: 221–236, 1997

    Google Scholar 

  37. Chakraborti S, Gurtner GH, Michael JR: Oxidant-mediated activation of PLA2 in pulmonary endothelium. Am J Physiol (Lung Cell Mol Physiol) 257: L430–L437, 1989

    Google Scholar 

  38. Chakraborti S, Michael JR, Sanyal T: Defining the role of protein kinase C in calcium ionophore-mediated activation of phospholipase A2 in pulmonary endothelium. Eur J Biochem 206: 967–972, 1992

    Google Scholar 

  39. Chakraborti S, Chakraborti T: Down regulation of protein kinase C attenuates the oxidant H2O2-mediated activation of phospholipase A2 in pulmonary smooth muscle cells. Cell Sig 7: 75–83, 1995

    Google Scholar 

  40. Chakraborti T, Ghosh SK, Michael JR, Batabyal SK, Chakraborti S: Targets of oxidative stress in the cardiovascular system: An overview. Mol Cell Biochem 187: 1–10, 1998

    Google Scholar 

  41. Chakraborti S, Chakraborti T: Oxidant-mediated activation of mitogen activated protein kinase and nuclear transcription factors in the cardiovascular system: An overview. Cell Sig 10: 675–683, 1998

    Google Scholar 

  42. Chakraborti T, Mandal A, Mandal M, Das S, Chakraborti S: Complement activation in heart diseases: Role of oxidants. Cell Sig 12: 607–616, 2000

    Google Scholar 

  43. Chakraborti S, Chakraborti T, Shaw G: β-adrenergic mechanisms in cardiac diseases: A perspective. Cell Sig 12: 499–513, 2000

    Google Scholar 

  44. Watanabe J, Naskayama S, Matsubara T, Hotta N: Regulation of intracellular free Mg2+ concentration in isolated rat hearts via beta-adrenergic and muscarinic receptors. J Mol Cell Cardiol 30: 2307–2318, 1998

    Google Scholar 

  45. Romani A, Marfella C, Scarpa A: Cell magnesium transport and homeostasis: Role of intracellular compartments. Miner Electrolyte Metab 19: 282–289, 1993

    Google Scholar 

  46. Shi B, Heavner JE, Boylan LM, Wang MJ, Spallholz JE: Dietary magnesium deficiency increases Gi alpha levels in the rat heart after myocardial infarction. Cardiovasc Res 30: 923–929, 1995

    Google Scholar 

  47. Feldmann MD, Copelas L, Gwathmey JK, Phillips P, Warren SE, Schoen FJ, Grossman W, Morgan JP: Deficient production of cyclic AMP: Pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure. Circulation 75: 331–339, 1987

    Google Scholar 

  48. Weinstein LS, Kats I, Spiegel AM, Carter AD: Characterization of the promoter of the human Gi2 alpha-subunit gene. Mol Endocrinol 4: 958–964, 1990

    Google Scholar 

  49. Muller FU, Boheler KR, Eschenhagen T, Schimitz W, Scholz H: Isoprenaline stimulates gene transcription of the inhibitory G protein alpha-subunit Gi alpha-2 in rat heart. Circ Res 72: 696–700, 1993

    Google Scholar 

  50. Romani A, Marfella C, Scarpa A: In: S. Papa, M. Tager (eds). Biochemistry of Cell Membranes. Birkhausen-Verlag, Basel, Switzerland, 1995, pp 231–244

    Google Scholar 

  51. Fatholahi M, LaNoue K, Romani A, Scarpa A: Relationship between total and free cellular Mg2+ during metabolic stimulation of rat cardiac myocytes and perfused hearts. Arch Biochem Biophys 374: 395–401, 2000

    Google Scholar 

  52. Smith DL, Maguire ME: Molecular aspects of Mg2+ transport systems. Miner Electrolyte Metab 19: 266–276, 1993

    Google Scholar 

  53. Akerman KEO: Effect of pH and Ca2+ on the retention of Ca2+ by rat liver mitochondria. Arch Biochem Biophys 189: 256–262, 1978

    Google Scholar 

  54. Carafoli E, Rossi CS: Ca2+ dependent movements of H+ and K+ across the rat liver mitochondrial membrane. Eur J Biochem 2: 224–228, 1967

    Google Scholar 

  55. Schuster SM, Olson MS: Studies of the energy-dependent uptake of divalent metal ions by beef heart mitochondria. J Biol Chem 249: 7151–7158, 1974

    Google Scholar 

  56. Rodriguez-Zavala JS, Moreno-Sanchez R: Modulation of oxidative phosphorylation by Mg2+ in rat heart mitochondria. J Biol Chem 273: 7850–7855, 1998

    Google Scholar 

  57. Saris NE, Mervaala E, Karppanen H, Khawaja JL, Lewenstam A: Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 294: 1–26, 2000

    Google Scholar 

  58. Gunther T: Mechanisms and regulation of Mg2+ efflux and Mg2+ influx. Miner Electrolyte Metab 19: 259–265, 1993

    Google Scholar 

  59. Kawano S: Dual mechanisms of Mg2+ block of ryanodine receptor Ca2+ release channel from cardiac sarcoplasmic reticulum. Recept Channels 5: 405–416, 1998

    Google Scholar 

  60. Petit-Jaques J, Sui JL, Logothetis DE: Synergistic activation of G protein-gated inwardly rectifying potassium channels by the betagamma subunits of G proteins and Na+ and Mg2+ ions. J Gen Physiol 114: 673–684, 1999

    Google Scholar 

  61. Kosso KL, Grubbs RD: Elevated extracellular Mg2+ increases Mg2+ buffering through a Ca-dependent mechanism in cardiomyocytes. Am J Physiol (Cell Physiol) 267: C633–C641, 1994

    Google Scholar 

  62. Schwinger RHJ, Bohm M, Uhlman R, Schmid U, Uberfuler R, Krenger E, Reichat B, Erdman E: Magnesium restores the altered force-frequency relationship in failing human myocardium. Am Heart J 126: 1018–1021, 1993

    Google Scholar 

  63. Whang R: Magnesium and potassium interrelationships in cardiac arrythmias. In: Y. Itokawa, J. Durlach (eds). Magnesium in Health and Disease. John Libby and Co. Ltd., London, 1989, pp 209–217

    Google Scholar 

  64. Kelepouris E, Kasama R, Agus ZS: Effects of intracellular magnesium on calcium, potassium and chloride channels. Miner Electrolyte Metab 19: 277–281, 1993

    Google Scholar 

  65. Yamaoka K, Seyama I: Phosphorylation modulates L-type Ca channels in frog ventricular myocytes by changes in sensitivity to Mg2+ block. Pflügers Arch 435: 329–337, 1998

    Google Scholar 

  66. White RE, Hartzell HC: Magnesium ions in cardiac function. Regulator of ion channels and second messengers. Biochem Pharmacol 38: 859–867, 1989

    Google Scholar 

  67. Kramer JH, Misik V, Weglicki WB: Magnesium-deficiency potentiates free radical production associated with postischemic injury to rat hearts: Vitamin E affords protection. Free Radic Biol Med 16: 713–723, 1994

    Google Scholar 

  68. Weglicki WB, Stafford RE, Freedman AM, Cassidy MM, Phillips TM: Modulation of cytokines and myocardial lesions by vitamin E and chloroquine in a Mg-deficient rat model. Am J Physiol (Cell Physiol) 264: C723–C726, 1993

    Google Scholar 

  69. Sanchez-Morino N, Planells E, Aranda P, Llopis J: Influence of magnesium deficiency on the bioavailability and tissue distribution of iron in the rat. J Nutr Biochem 1: 103–108, 2000

    Google Scholar 

  70. Beard JL, Dowson HD: In: B.L. O'Dell, R.A. Sunde (eds). Handbook of Nutritionally Essential Mineral Elements. Marcel Dekker, Basel, Switzerland, 1994

    Google Scholar 

  71. Weglicki WB, Phillips TM, Freedman AM, Cassidy MM, Dickens BF: Magnesium-deficiency elevates circulating levels of inflammatory cytokines and endothelin. Mol Cell Biochem 25: 169–173, 1992

    Google Scholar 

  72. Komori S, Li B, Matsumara K, Takusagawa M, Sano S, Kohno I, Osada M, Sawanabori T, Umetani K, Ijiri H, Tamera K: Antiarrhythmic effect of magnesium sulfate against occlusion-induced arrhythmias and reperfusion-induced arrhythmias in anesthetized rats. Mol Cell Biochem 199: 201–208, 1999

    Google Scholar 

  73. Tosaki A, Szerdahelyi P, Engellman RM, Das DK: Effects of extracellular magnesium manipulation on reperfusion-induced arrhythmias and myocardial ion shifts in isolated ischemic reperfused rat hearts. J Pharmacol Exp Ther 267: 1045–1053, 1993

    Google Scholar 

  74. Weglicki WB, Phillips TM, Lassidy MM, Max TT, Dickens BF, Strafford RE, Kramer JH: In: K.J.A. Davis, F. Ursini (eds). The Oxygen Paradox. Cleop University Press, Padova, Italy, 1995, pp 773–782

    Google Scholar 

  75. Squibb KS, Fowler BA: Protein interactions with detrimental metal ions. In: G. Berthon (ed). Hand book of Metal-Ligand Interactions in Biological Fluids. Marcel Dekker, Basel, Switzerland, 1995

    Google Scholar 

  76. Prohaska JR: Changes in Cu, Zn-superoxide dismutase, cytochrome c oxidase, glutathione peroxidase and glutathione transferase activities in copper-deficient mice and rats. J Nutr 121: 355–363, 1991

    Google Scholar 

  77. Mallet RT, Sun J, Fan WL, Kang WH, Bunger R: Magnesium activated adenosine formation in intact perfused heart: Predominance of ecto 5′-nucleotidase during hypermagnesemia. Biochim Biophys Acta 1290: 165–176, 1996

    Google Scholar 

  78. Niiya K, Uchida S, Tsuji T, Olsson RA: Glibenclamide reduces the coronary vasoactivity of adenosine receptor agonists. J Pharmacol Exp Ther 271: 14–19, 1994

    Google Scholar 

  79. Korthuis RJ, Grisham MB, Zimmerman BJ, Granger DN, Taylor AE: Vascular injury in dogs during ischemia-reperfusion: Improvement with ATP-MgCl2 pretreatment. Am J Physiol 254: H702–H708, 1988

    Google Scholar 

  80. Bradamente S, de Jong JW, Piccinini F: Intracellular magnesium homeostasis is involved in the functional recovery of preconditioned rat heart. Biochem Biophys Res Commun 29: 872–878, 1993

    Google Scholar 

  81. Kramer JH, Phillips TM, Weglicki WB: Magnesium-deficiency-enhanced post-ischemic myocardial injury is reduced by substance P receptor blockade. J Mol Cell Cardiol 29: 97–110, 1997

    Google Scholar 

  82. Ruibanyi GM, Ho EH, Cantor EH, Lumma WC, Bothelho LH: Cytoprotective function of nitric oxide: Inactivation of superoxide radicals produced by human leukocytes. Biochem Biophys Res Commun 31: 1392–1397, 1991

    Google Scholar 

  83. Beckman JS, Bechman TW, Chen J, Marshall PA, Freedman BA: Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624, 1990

    Google Scholar 

  84. Nakagawa N, Sano H, Iwamoto I: Substance P induces the expression of intercellular adhesion molecule-1 on vascular endothelial cells and enhances neutrophil transendothelial migration. Peptides 16: 721–725, 1995

    Google Scholar 

  85. Altura BM, Zhang A, Altura BT: Magnesium, hypertensive vascular diseases, atherogenesis, subcellular compartmentation of Ca2+ and Mg2+ and vascular contractility. Miner Electrolyte Metab 19: 323–336, 1993

    Google Scholar 

  86. Whanag R, Sims G: Magnesium and potassium supplementation in the prevention of diabetic vascular disease. Med Hypotheses 55: 263–265, 2000

    Google Scholar 

  87. Amano T, Matsubara T, Watanabe J, Nakayama S, Hotta N: Insulin modulation of intracellular free magnesium in heart: Involvement of protein kinase C. Br J Pharmacol 130: 731–738, 2000

    Google Scholar 

  88. Gunther T, Vormann J, Hollriegel V: Isoproterenol-induced Mg2+ uptake in liver. FEBS Lett 307: 333–336, 1992

    Google Scholar 

  89. Rayssinguier Y, Mazur A, Cordot P, Gueux E: In: Y. Itokawa, J. Durlach (eds). Magnesium In Health and Disease. John Libby and Co. Ltd., London, 1999, pp 199–207

    Google Scholar 

  90. Davidson DM: Cardiovascular effects of alcohol. West J Med 151: 430–439, 1989

    Google Scholar 

  91. Renaud S, de Lorgeril M: Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 20: 1523–1526, 1992

    Google Scholar 

  92. Patel VB, Why HJ, Richardson PJ, Preedy VR: The effects of alcohol on the heart. Adverse Drug React Toxicol Rev 16: 15–43, 1997

    Google Scholar 

  93. Pasternak K: Tissue concentrations of magnesium in rats receiving various dosages of ethanol. Magnes Res 12: 167–170, 1999

    Google Scholar 

  94. St Leger AS, Cochrane AL, Moore F: Factors associated with cardiac mortality in developed countries with particular reference to the consumption of wine. Lancet 12: 1017–1020, 1979

    Google Scholar 

  95. Ikeda K, Hachisuga M, Goto M: Effects of alcohol on the myocardium. I. An analysis of the effects of ethanol on the bullfrog myocardium. Fukuoka Igaku Zasshi 75: 64–71, 1984

    Google Scholar 

  96. Kotake H, Hirai S, Nawada T, Kurata Y, Watanabe M, Hisatome I, Hasegawa J, Mashiba H: Membrane actions of ethanol on rabbit sinoatrial node studied by voltage clamp method. Pharmacol Toxicol 65: 343–346, 1989

    Google Scholar 

  97. Li W, Zheng T, Altura BM, Altura BT: Magnesium modulates contractile responses of rat aorta to thiocyanate: A possible relationship to smoking-induced atherosclerosis. Toxicol Appl Pharmacol 15: 77–84, 1999

    Google Scholar 

  98. Jacobs MC, Lenders JW, Kapma JA, Smits P, Thien T: Effect of chronic smoking on endothelium-dependent vascular relaxation in humans. Clin Sci (Lond) 85: 51–55, 1993

    Google Scholar 

  99. McCully JD, Levitsky S: Mechanisms of in vitro cardioprotective action of magnesium on the aging myocardium. Magnes Res 10: 157–168, 1997

    Google Scholar 

  100. Tsukube T, McCully JD, Faulk EA, Federman M, LO Cicero J, Krukenkamp IB, Levitsky S: Magnesium cardioplegia reduces cytosolic and nuclear calcium and DNA fragmentation in the senescent myocardium. Ann Thorac Surg 58: 1005–1011, 1994

    Google Scholar 

  101. Headrick JP: Aging impairs functional, metabolic and ionic recovery from ischemia-eperfusion and hypoxia-reoxygenation. J Mol Cell Cardiol 30: 1415–1430, 1998

    Google Scholar 

  102. Faulk EA, McCully JD, Hadlow NC, Tsukube T, Krukenkamp IB, Federman M, Levitsky S: Magnesium cardioplegia enhances mRNA levels and the maximal velocity of cytochrome oxidase I in the senescent myocardium during global ischemia. Circulation 92: 405–412, 1995

    Google Scholar 

  103. Altura BM, Altura BT: Calcium content and force of drug-induced contractions of arterial muscle during recovery in vitro. Proc Soc Exp Biol Med 135: 739–744, 1970

    Google Scholar 

  104. Morrill GA, Gupta RK, Kostellow AB, Ma GY, Zhang A, Altura BT, Altura BM: Mg2+ modulates membrane lipids in vascular smooth muscle: A link to atherogenesis. FEBS Lett 19: 191–194, 1997

    Google Scholar 

  105. Bloom S: Myocardial injury in magnesium deficiency. In: Y. Itokawa, J. Durlach (eds). Magnesium in Health and Diseases. John Libby and Co. Ltd., London, 1989, pp 191–197

    Google Scholar 

  106. Griffiths EJ: Calcium handling and cell contraction in rat cardiomyocytes depleted of intracellular magnesium. Cardiovasc Res 47: 116–123, 2000

    Google Scholar 

  107. Connelly T, Ahern C, Sukhareva M, Coronado R: Removal of Mg2+ inhibition of cardiac ryanodine receptor by palmitoyl coenzyme A. FEBS Lett 352: 285–290, 1994

    Google Scholar 

  108. Thogersen AM, Johnson O, Wester PO: Effects of magnesium infusion on thrombolytic and non-thrombolytic treated patients with acute myocardial infarction. Int J Cardiol 39: 13–22, 1993

    Google Scholar 

  109. Liao F, Folsom AR, Brancati FL: Is low magnesium concentration a risk factor for coronary heart disease? The atherosclerosis risk in communities (ARC) study. Editorial. Am Heart J 136: 480–490, 1998

    Google Scholar 

  110. Laver DR, Baynes TM, Dulhunty AF: Magnesium inhibition of ryanodine-receptor calcium channels: Evidence for two independent mechanisms. J Membr Biol 1: 213–229, 1997

    Google Scholar 

  111. Howarth FC, Waring J, Hustler BI, Singh J: Effects of extracellular magnesium and beta adrenergic stimulation on contractile force and magnesium mobilization in the isolated rat heart. Magnes Res 7: 187–197, 1994

    Google Scholar 

  112. Angomachalelis NJ, Titopoulos HS, Tsoungas MG, Gavrielides A: Red cell magnesium concentration in cor pulmonale. Correlation with cardiopulmonary findings. Chest 103: 751–755, 1993

    Google Scholar 

  113. Nagase N: Hypertension and serum Mg2+ in the patients with diabetes and coronary heart disease. Hypertens Res 19: S65–S68, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborti, S., Chakraborti, T., Mandal, M. et al. Protective role of magnesium in cardiovascular diseases: A review. Mol Cell Biochem 238, 163–179 (2002). https://doi.org/10.1023/A:1019998702946

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019998702946

Navigation