Skip to main content
Log in

Mathematical Theory of Non-Equilibrium Quantum Statistical Mechanics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We review and further develop a mathematical framework for non-equilibrium quantum statistical mechanics recently proposed in refs. 1–7. In the algebraic formalism of quantum statistical mechanics we introduce notions of non-equilibrium steady states, entropy production and heat fluxes, and study their properties. Our basic paradigm is a model of a small (finite) quantum system coupled to several independent thermal reservoirs. We exhibit examples of such systems which have strictly positive entropy production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. V. Jakši? and C.-A. Pillet, On entropy production in quantum statistical mechanics, Commun. Math. Phys. 217:285 (2001).

    Google Scholar 

  2. V. Jakši? and C.-A. Pillet, Non-equilibrium steady states for finite quantum systems coupled to thermal reservoirs, Commun. Math. Phys. 226:131 (2002).

    Google Scholar 

  3. V. Jakši? and C.-A. Pillet, in preparation.

  4. D. Ruelle, Natural nonequilibrium states in quantum statistical mechanics, J. Stat. Phys. 98:57 (2000).

    Google Scholar 

  5. D. Ruelle, Entropy production in quantum spin systems, Commun. Math. Phys. 224:3 (2001).

    Google Scholar 

  6. D. Ruelle, How should one define entropy production for nonequilibrium quantum spin systems? Preprint (2001), mp-arc 01-258.

  7. D. Ruelle, Topics in quantum statistical mechanics and operator algebras. Preprint (2001), mp-arc 01-257.

  8. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 1 (Springer-Verlag, Berlin, 1987).

    Google Scholar 

  9. O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics 2 (Springer-Verlag, Berlin, 1996).

    Google Scholar 

  10. R. Haag, Local Quantum Physics (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  11. B. Simon, Statistical Mechanics of Lattice Gases (Princeton University Press, Princeton, 1993).

    Google Scholar 

  12. W. Thirring, Quantum Mechanics of Large Systems (Springer-Verlag, Wien, 1980).

    Google Scholar 

  13. M. Ohya and D. Petz, Quantum Entropy and Its Use (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  14. V. Jakši? and C.-A. Pillet, Spectral theory of thermal relaxation, J. Math. Phys. 38:1757 (1997).

    Google Scholar 

  15. V. Jakši? and C.-A. Pillet, On a model for quantum friction III. Ergodic properties of the spin-boson system, Commun. Math. Phys. 178:627 (1996).

    Google Scholar 

  16. H. Araki and W. Wyss, Representations of canonical anti-commutation relations, Helv. Phys. Acta 37:136 (1964).

    Google Scholar 

  17. N. M. Hugenholz, Derivation of the Boltzmann equation for a Fermi gas, J. Stat. Phys. 32:231 (1983).

    Google Scholar 

  18. R. B. Israel, Convexity in the Theory of Lattice Gases (Princeton University Press, Princeton, 1979).

    Google Scholar 

  19. D. Ruelle, Statistical Mechanics. Rigorous Results (Benjamin, New York, 1969).

    Google Scholar 

  20. H. Araki, On the XY-model on two-sided infinite chain, Publ. Res. Inst. Math. Sci. Kyoto Univ. 20:277 (1984).

    Google Scholar 

  21. H. Araki, Dynamic and ergodic properties of the XY-model, in Critical Phenomena (Brasov, 1983), Progr. Phys., Vol. 11 (Birkhäuser, Boston, 1985), p. 287.

    Google Scholar 

  22. R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras. Vol. II. Advanced Theory (Academic Press, Orlando, 1986).

    Google Scholar 

  23. M. Takesaki, Theory of Operator Algebras I (Springer-Verlag, New York, 1979).

    Google Scholar 

  24. H. Araki, Relative Hamiltonian for faithful normal states of a von Neumann algebra, Publ. Res. Inst. Math. Sci. Kyoto Univ. 9:165 (1973).

    Google Scholar 

  25. J. Derezinski, V. Jakši?, and C.-A. Pillet, Perturbation theory of Wg-dynamics, Liouvilleans and KMS states. Submitted.

  26. V. Bach, J. Fröhlich, and I. Sigal, Return to equilibrium, J. Math. Phys. 41:3985 (2000).

    Google Scholar 

  27. J. Derezinski and V. Jakši?, Spectral theory of Pauli-Fierz operators, J. Func. Anal. 180:243 (2001).

    Google Scholar 

  28. M. Merkli, Positive commutators in non-equilibrium quantum statistical mechanics, Commun. Math. Phys. 223:327 (2001).

    Google Scholar 

  29. O. Bratteli, A. Kishimoto, and D. W. Robinson, Stability properties and the KMS condition, Commun. Math. Phys. 61:209 (1978).

    Google Scholar 

  30. R. Haag, D. Kastler, and E. Trych-Pohlmeyer, Stability and equilibrium states, Commun. Math. Phys. 38:213 (1974).

    Google Scholar 

  31. R. Haag and E. Trych-Pohlmeyer, Stability properties of equilibrium states, Commun. Math. Phys. 56:273 (1977).

    Google Scholar 

  32. H. Narnhofer and W. Thirring, On the adiabatic theorem in quantum statistical mechanics, Phys. Rev. A 26:3646 (1982).

    Google Scholar 

  33. D. D. Botvich and V. A. Malyshev, Unitary equivalence of temperature dynamics for ideal and locally perturbed Fermi gas, Commun. Math. Phys. 91:301 (1983).

    Google Scholar 

  34. D. Ruelle, Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics, J. Stat. Phys. 95:393 (1999).

    Google Scholar 

  35. D. Ruelle, One-dimensional Gibbs states and Axiom A diffeomorphisms, J. Diff. Geom. 25:117 (1987).

    Google Scholar 

  36. D. Ruelle, Resonances for axiom A flows. Axiom A diffeomorphisms, J. Diff. Geom. 25:99 (1987).

    Google Scholar 

  37. D. Ruelle, Resonances of chaotic dynamical systems, Phys. Rev. Lett. 56:405 (1986).

    Google Scholar 

  38. J.-P. Eckmann, Resonances in dynamical systems, Proceedings of the IXth International Congress of Mathematical Physics (Swansea 1988) (Hilger, Bristol, 1989).

    Google Scholar 

  39. H. Araki, Relative entropy of states of von Neumann algebras, Publ. Res. Inst. Math. Sci. Kyoto Univ. 11:809 (1975/76).

    Google Scholar 

  40. H. Araki, Relative entropy for states of von Neumann algebras, II, Publ. Res. Inst. Math. Sci. Kyoto Univ. 13:173 (1977/78).

    Google Scholar 

  41. H. Spohn, Entropy production for quantum dynamical semigroups, J. Math. Phys. 19:227 (1978).

    Google Scholar 

  42. J. L. Lebowitz and S. Spohn, Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs, Adv. Chem. Phys. 38:109 (1978).

    Google Scholar 

  43. I. Ojima, H. Hasegawa, and M. Ichiyanagi, Entropy production and its positivity in nonlinear response theory of quantum dynamical systems, J. Stat. Phys. 50:633 (1988).

    Google Scholar 

  44. I. Ojima, Entropy production and non-equilibrium stationarity in quantum dynamical systems: Physical meaning of van Hove limit, J. Stat. Phys. 56:203 (1989).

    Google Scholar 

  45. I. Ojima, Entropy production and non-equilibrium stationarity in quantum dynamical systems, in Proceedings of International Workshop on Quantum Aspects of Optical Communications, Lecture Notes in Physics, Vol. 378 (Springer-Verlag, Berlin, 1991), p. 164.

    Google Scholar 

  46. W. Pusz and S. L. Woronowicz, Passive states and KMS states for general quantum systems, Commun. Math. Phys. 58:273 (1978).

    Google Scholar 

  47. P. G. Bargmann and J. L. Lebowitz, New approach to nonequilibrium process, Phys. Rev. 99:578 (1955).

    Google Scholar 

  48. J. L. Lebowitz, Stationary nonequilibrium Gibbsian ensembles, Phys. Rev. 114:1192 (1959).

    Google Scholar 

  49. J. L. Lebowitz and A. Shimony, Statistical mechanics of open systems, Phys. Rev. 128: 1945 (1962).

    Google Scholar 

  50. V. V. Aizenstadt and V. A. Malyshev, Spin interaction with an ideal Fermi gas, J. Stat. Phys. 48:51 (1987).

    Google Scholar 

  51. E. B. Davies, Markovian master equations, Commun. Math. Phys. 39:91 (1974).

    Google Scholar 

  52. V. Gorini, A. Frigerio, M. Verri, A. Kossakowski, and E. C. G. Sudarshan, Properties of quantum Markovian master equations, Rep. Math. Phys. 13:149 (1978).

    Google Scholar 

  53. E. B. Davies and H. Spohn, Open quantum systems with time-dependent Hamiltonians and their linear response, J. Stat. Phys. 19:511 (1978).

    Google Scholar 

  54. V. Jakši? and C.-A. Pillet, On a model for quantum friction II. Fermi's golden rule and dynamics at positive temperature, Commun. Math. Phys. 176:619 (1996).

    Google Scholar 

  55. A. Frigerio, Quantum dynamical semigroups and approach to equilibrium, Lett. Math. Phys. 2:79 (1977).

    Google Scholar 

  56. A. Frigerio, Stationary states of quantum dynamical semigroups, Commun. Math. Phys. 63:269 (1978).

    Google Scholar 

  57. H. Spohn, An algebraic condition for the approach to equilibrium of an open N-level system, Lett. Math. Phys. 2:33 (1977/78).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakšić, V., Pillet, CA. Mathematical Theory of Non-Equilibrium Quantum Statistical Mechanics. Journal of Statistical Physics 108, 787–829 (2002). https://doi.org/10.1023/A:1019818909696

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019818909696

Navigation