Skip to main content
Log in

Gaussian radial‐basis functions: Cardinal interpolation of ℓp and power‐growth data

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Suppose λ is a positive number. Basic theory of cardinal interpolation ensures the existence of the Gaussian cardinal function \(L_\lambda (x) = \sum\nolimits_{k \in \mathbb{Z}} {c_k \exp ( - \lambda (x - k)^2 ),x \in \mathbb{R}} ,\) satisfying the interpolatory conditions \(L_\lambda (j) = \delta _{0j} ,j \in \mathbb{Z}.\) The paper considers the Gaussian cardinal interpolation operator

$$(\mathcal{L}_\lambda {\text{y}})(x): = \sum\limits_{k \in \mathbb{Z}} {y_k L_\lambda (x - k),{\text{ y}} = (y_k )_{k \in \mathbb{Z}} ,{\text{ }}x \in \mathbb{R}} ,$$

as a linear mapping from ℓp(ℤ) into L p(ℝ), 1≤ p ∞, and in particular, its behaviour as λ→0+. It is shown that \(\left\| {\mathcal{L}_\lambda } \right\|_p \) is uniformly bounded (in λ) for 1 < p < ∞, and that \(\left\| {\mathcal{L}_\lambda } \right\|_1 \asymp \log (1/\lambda )\) as λ→0+. The limiting behaviour is seen to be that of the classical Whittaker operator

$$\mathcal{W}:{\text{y}} \mapsto \sum\limits_{k \in \mathbb{Z}} {y_k \frac{{\sin \pi (x - k)}}{{\pi (x - k)}}} ,$$

in that \(\lim _{\lambda \to 0^ + } \left\| {\mathcal{L}_\lambda {\text{y}} - \mathcal{W}{\text{y}}} \right\|_p = 0,\) for every \({\text{y}} \in \ell ^p (\mathbb{Z}){\text{ and }}1 < p < \infty .\) It is further shown that the Gaussian cardinal interpolants to a function f which is the Fourier transform of a tempered distribution supported in (-π,π) converge locally uniformly to f as λ→0+. Multidimensional extensions of these results are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B.J.C. Baxter and N. Sivakumar, On shifted cardinal interpolation by Gaussians and multiquadrics, J. Approx. Theory 87 (1996) 36-59.

    Article  MATH  MathSciNet  Google Scholar 

  2. M. Buhmann, Multivariate cardinal interpolation with radial basis functions, Constr. Approx. 6 (1990) 225-255.

    Article  MATH  MathSciNet  Google Scholar 

  3. M.J. Marsden and R.A. Mureika, Cardinal spline interpolation in L 2, Illinois J. Math. 19 (1975) 145-147.

    MATH  MathSciNet  Google Scholar 

  4. M.J. Marsden, F.B. Richards and S.D. Riemenschneider, Cardinal spline interpolation operators on p data, Indiana Univ. Math. J. 24 (1975) 677-689; Erratum, ibid., 25 (1976) 919.

    Article  MATH  MathSciNet  Google Scholar 

  5. F.B. Richards, Uniform spline interpolation operators in L 2, Illinois J. Math. 18 (1974) 516-521.

    MATH  MathSciNet  Google Scholar 

  6. F.B. Richards, The Lebesgue constants for cardinal spline interpolation, J. Approx. Theory 14 (1975) 83-92.

    Article  MATH  MathSciNet  Google Scholar 

  7. S.D. Riemenschneider, Convergence of interpolating cardinal splines: power growth, Israel J. Math. 23 (1976) 339-346.

    MATH  MathSciNet  Google Scholar 

  8. S.D. Riemenschneider, Multivariate cardinal interpolation, in: Approximation Theory VI, Vol. 2, eds. C.K. Chui, L.L. Schumaker and J.D. Ward (Academic Press, New York, 1989) pp. 561-580.

    Google Scholar 

  9. S.D. Riemenschneider and N. Sivakumar, On cardinal interpolation by Gaussian radial-basis functions: properties of fundamental functions and estimates for Lebesgue constants, Center for Approximation Theory Report No. 380, Texas A&M University (1997); J. d'Analyse (to appear).

  10. N. Sivakumar, A note on the Gaussian cardinal-interpolation operator, Proc. Edinburgh Math. Soc. 40 (1997) 137-149.

    Article  MATH  MathSciNet  Google Scholar 

  11. F. Stenger, Numerical Methods Based on Sinc and Analytic Functions (Springer, New York, 1993).

    MATH  Google Scholar 

  12. R. Strichartz, A Guide to Distribution Theory and Fourier Transforms (CRC Press, Boca Raton, FL, 1993).

    Google Scholar 

  13. F. Treves, Topological Vector Spaces, Distributions and Kernels (Academic Press, New York, 1967).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riemenschneider, S., Sivakumar, N. Gaussian radial‐basis functions: Cardinal interpolation of ℓp and power‐growth data. Advances in Computational Mathematics 11, 229–251 (1999). https://doi.org/10.1023/A:1018980110778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018980110778

Keywords

Navigation