Skip to main content
Log in

Numerical solution of generalized Lyapunov equations

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Two efficient methods for solving generalized Lyapunov equations and their implementations in FORTRAN 77 are presented. The first one is a generalization of the Bartels–Stewart method and the second is an extension of Hammarling's method to generalized Lyapunov equations. Our LAPACK based subroutines are implemented in a quite flexible way. They can handle the transposed equations and provide scaling to avoid overflow in the solution. Moreover, the Bartels–Stewart subroutine offers the optional estimation of the separation and the reciprocal condition number. A brief description of both algorithms is given. The performance of the software is demonstrated by numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorenson, LAPACK Users' Guide (SIAM, Philadelphia, PA, 1992).

    MATH  Google Scholar 

  2. R.H. Bartels and G.W. Stewart, Solution of the equation AX +XB = C, Comm. ACM 15 (1972) 820–826.

    Article  Google Scholar 

  3. R. Byers, A LINPACK-style condition estimator for the equation AX ? XB T = C, IEEE Trans. Automat. Control 29 (1984) 926–928.

    Article  MATH  MathSciNet  Google Scholar 

  4. K.-W.E. Chu, The solution of the matrix equation AXB?CXD = Y and (YA?DZ, YC?BZ) = (E,F), Linear Algebra Appl. 93 (1987) 93–105.

    Article  MATH  MathSciNet  Google Scholar 

  5. J.J. Dongarra, J.R. Bunch, C.B. Moler and G.W. Stewart, LINPACK Users' Guide (SIAM, Philadelphia, PA, 1979).

    MATH  Google Scholar 

  6. B.S. Garbow, J.M. Boyle, J.J. Dongarra and C.B. Moler, Matrix Eigensystem Routines – EISPACK Guide Extension, Lecture Notes in Computer Science 51 (Springer, New York, 1977).

    Google Scholar 

  7. J.D. Gardiner, A.J. Laub, J.J. Amato and C.B. Moler, Solution of the Sylvester matrix equation AXB T + CXD T = E, ACM Trans. Math. Software 18 (1992) 223–231.

    Article  MATH  MathSciNet  Google Scholar 

  8. J.D. Gardiner, M.R. Wette, A.J. Laub, J.J. Amato and C.B. Moler, A FORTRAN-77 software package for solving the Sylvester matrix equation AXB T + CXD T = E, ACM Trans. Math. Software 18 (1992) 232–238.

    Article  MATH  MathSciNet  Google Scholar 

  9. G.H. Golub and C.F. Van Loan, Matrix Computations (Johns Hopkins University Press, Baltimore, MD, 3rd ed., 1996).

    Google Scholar 

  10. W.W. Hager, Condition estimates, SIAM J. Sci. Statist. Comput 5 (1984) 311–316.

    Article  MATH  MathSciNet  Google Scholar 

  11. S.J. Hammarling, Numerical solution of the stable, non-negative definite Lyapunov equation, IMA J. Numer. Anal. 2 (1982) 303–323.

    MATH  MathSciNet  Google Scholar 

  12. S.J. Hammarling, Numerical solution of the discrete-time, convergent, non-negative definite Lyapunov equation, Systems Control Lett. 17 (1991) 137–139.

    Article  MATH  MathSciNet  Google Scholar 

  13. N.J. Higham, Perturbation theory and backward error for AX ?XB = C, BIT 33 (1993) 124–136.

    Article  MATH  MathSciNet  Google Scholar 

  14. N.J. Higham, FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation, ACM Trans. Math. Software 14 (1988) 381–396.

    Article  MATH  MathSciNet  Google Scholar 

  15. B. Kågström and L. Westin, Generalized Schur methods with condition estimators for solving the generalized Sylvester equation, IEEE Trans. Automat. Control 34 (1989) 745–751.

    Article  MATH  MathSciNet  Google Scholar 

  16. B. Kågström and P. Poromaa, LAPACK-style algorithms and software for solving the generalized Sylvester equation and estimating the separation between regular matrix pairs, ACM Trans. Math. Software 22 (1996) 78–103.

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Lancaster and M. Tismenetsky, The Theory of Matrices (Academic Press, Orlando, 2nd ed., 1985).

    MATH  Google Scholar 

  18. J. Snyders and M. Zakai, On non-negative solutions of the equation AD + DA T = ?C, SIAM J. Appl. Math. 18 (1970) 704–714.

    Article  MATH  MathSciNet  Google Scholar 

  19. Working Group on Software (WGS), Implementation and documentation standards, WGS-Report 90-1, Eindhoven/Oxford (1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Penzl, T. Numerical solution of generalized Lyapunov equations. Advances in Computational Mathematics 8, 33–48 (1998). https://doi.org/10.1023/A:1018979826766

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018979826766

Navigation