Foundations of Physics

, Volume 29, Issue 11, pp 1785–1805

Gauge Transformations for a Driven Quantum Particle in an Infinite Square Well

  • Stefan Weigert
Article

DOI: 10.1023/A:1018878014253

Cite this article as:
Weigert, S. Foundations of Physics (1999) 29: 1785. doi:10.1023/A:1018878014253

Abstract

Quantum mechanics of a particle in an infinite square well under the influence of a time-dependent electric field is reconsidered. In some gauge, the Hamiltonian depends linearly on the momentum operator, which is symmetric but not self-adjoint when defined on a finite interval. In spite of this symmetric part, the Hamiltonian operator is shown to be self-adjoint. This follows from a theorem by Kato and Rellich which guarantees the stability of a self-adjoint operator under certain symmetric perturbations. The result, which has been assumed tacitly by other authors, is important in order to establish the equivalence of different Hamiltonian operators related to each other by quantum gauge transformations.

Copyright information

© Plenum Publishing Corporation 1999

Authors and Affiliations

  • Stefan Weigert

There are no affiliations available