Skip to main content
Log in

Polarized Nuclei in Normal and Superconducting Rhodium

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We performed SQUID-NMR measurements on a rhodium single crystal at ultra-low nuclear-spin temperatures. With initial polarizations up to p=0.95, the antiferromagnetic tendency was clear, but surprisingly no indication of actual nuclear magnetic ordering was obtained. The lowest nuclear temperatures achieved were below 100 pK, whereas the lowest directly measured temperature was 280 pK. Double-spin-flip and evidence for triple-spin-flip resonance lines were detected, yielding direct information of the interactions between the nuclear spins. The superconducting transition of rhodium was observed with the critical values, Tc=210 μK and Bc(0)=3.4 μT. For the first time, measurements with substantially correlated nuclei were performed in the superconducting state, where the effect of the coherent electron system on the spin-lattice relaxation rate was studied. The spin-lattice relaxation time was longer in the superconducting state at all temperatures and displayed a strong dependence on nuclear susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. S Oja and O. V. Lounasmaa, Nuclear magnetic ordering in simple metals at positive and negative temperatures, Rev. Mod. Phys. 69, 1–136 (1997).

    Google Scholar 

  2. M. T. Huiku and M. T. Loponen, Observation of a magnetic phase transition in the nuclear spin system of metallic copper at nanokelvin temperatures, Phys. Rev. Lett. 49, 1288–1291 (1982).

    Google Scholar 

  3. P. J. Hakonen, S. Yin, and K. K. Nummila, Phase diagram and NMR studies of antiferro-magnetically ordered polycrystalline silver, Europhys. Lett. 15, 677–682 (1991).

    Google Scholar 

  4. Ch. Buchal, F. Pobell, R. M. Mueller, M. Kubota, and J. R. Owers-Bradley, Superconduc-tivity of rhodium at ultralow temperatures, Phys. Rev. Lett. 50, 64–67 (1983).

    Google Scholar 

  5. D. E. MacLaughlin, in Solid State Physics, H. Ehrenreich, F. Seitz, and D. Turnbull (eds.), Vol. 31, Academic, New York (1976).

    Google Scholar 

  6. S. Rehmann, T. Herrmannsdörfer, and F. Pobell, Interplay of nuclear magnetism and superconductivity in AuIn2, Phys. Rev. Lett. 78, 1122–1125 (1997).

    Google Scholar 

  7. M. Seibold, T. Herrmannsdörfer, and F. Pobell, Static nuclear magnetisation of aluminum measured by its influence on the superconducting critical field, J. Low Temp. Phys. 110, 363–368 (1998).

    Google Scholar 

  8. R. T. Vuorinen, P. J. Hakonen, W. Yao, and O. V. Lounasmaa, Susceptibility and relaxation measurements on rhodium metal at positive and negative spin temperatures in the nanokelvin range, J. Low Temp. Phys. 98, 449–487 (1995).

    Google Scholar 

  9. P. J. Hakonen, R. T. Vuorinen, and J. E. Martikainen, Nuclear antiferromagnetism in rhodium metal at positive and negative nanokelvin temperatures, Phys. Rev. Lett. 70, 2818–2821 (1993).

    PubMed  Google Scholar 

  10. A. S. Oja and P. Kumar, Indirect nuclear spin interactions and nuclear ordering in metals, J. Low Temp. Phys. 66, 155–167 (1987).

    Google Scholar 

  11. A. Narath, A. T. Fromhold, Jr, and E. D. Jones, Nuclear spin relaxation in metals: Rhodium, palladium, and silver, Phys. Rev. 144, 428–435 (1966).

    Google Scholar 

  12. J. T. Tuoriniemi, T. A. Knuuttila, K. Lefmann, K. K. Nummila, W. Yao, and F. B. Rasmussen, Double-spin-flip resonance of rhodium nuclei at positive and negative spin temperatures, Phys. Rev. Lett. 84, 370–373 (2000).

    Google Scholar 

  13. N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York (1976).

    Google Scholar 

  14. W. Yao, T. A. Knuuttila, K. K. Nummila, J. E. Martikainen, A. S. Oja, and O. V. Lounasmaa, A versatile nuclear demagnetization cryostat for ultralow temperature research, J. Low Temp. Phys. 120, 121–150 (2000).

    Google Scholar 

  15. Material-Technologie 6 Kristalle GmbH, Im Langenbroich 20, D-52428 Jülich.

  16. J. A. Osborn, Demagnetizing factors of the general ellipsoid, Phys. Rev. 67, 351–357 (1945).

    Google Scholar 

  17. F. R. Fickett, Oxygen annealing of copper: A review, Materials Science and Engineering 14, 199–210 (1974).

    Google Scholar 

  18. A. C. Ehrlich, Oxygen annealing of silver for obtaining low electrical resistivity: Technique and interpretation, J. Mater. Sci. 9, 1064–1072 (1974).

    Google Scholar 

  19. F. Pobell, Matter and Methods at Low Temperatures, Springer-Verlag (1992).

  20. K. Lefmann, T. A. Knuuttila, J. E. Martikainen, L. T. Kuhn, and K. K. Nummila, Effect of heat treatment of pure and carbon-polluted rhodium samples on the low-temperature resistivity, J. Mater. Sci. 36, 839–844 (2001).

    Google Scholar 

  21. Vacuumschmelze GmbH, Grüner Weg 37, 63450, Hanau, Germany.

  22. P. Jauho and P. V. Pirilä, Spin-lattice relaxation of nuclei due to conduction electrons at very low temperatures, Phys. Rev. B 1, 21–24 (1970).

    Google Scholar 

  23. P. J. Hakonen, S. Yin, and O. V. Lounasmaa, Nuclear magnetism in silver at positive and negative absolute temperatures in the low nanokelvin range, Phys. Rev. Lett. 64, 2707–2710 (1990).

    Google Scholar 

  24. Oxford Instruments, Ltd. Old Station Way, Eynsham OX8 1TL, UK.

  25. VTT Automation, Otakaari 7 B, P.O. Box 1304, FIN-02044 VTT, Finland.

  26. M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids, Oxford University Press (1970).

  27. H. Ishii and P. J. Hakonen, Nuclear spin relaxation at ultralow temperatures, Phys. Rev. B 59, 9462–9466 (1999).

    Google Scholar 

  28. A. S. Oja, A. J. Annila, and Y. Takano, Investigations of nuclear magnetism in silver down to picokelvin temperatures. I, J. Low Temp. Phys. 85, 1–24 (1991).

    Google Scholar 

  29. A. G. Anderson, Nuclear spin absorption spectra in solids, Phys. Rev. 125, 1517–1527 (1962).

    Google Scholar 

  30. K. I. Juntunen, Effects of eddy currents on the NMR spectra of a highly polarized metal sample, Master's thesis, Helsinki University of Technology (2000).

  31. P. J. Hakonen and S. Yin, Investigations of nuclear magnetism in silver down to picokelvin temperatures. II, J. Low Temp. Phys. 85, 25–65 (1991).

    Google Scholar 

  32. J. P. Ekström, J. F. Jacquinot, M. T. Loponen, J. K. Soini, and P. Kumar, Nuclear spin interaction in copper: NMR at high polarization and in low fields, Physica B 98, 45–52 (1979).

    Google Scholar 

  33. P. L. Moyland, P. Kumar, J. Xu, and Y. Takano, Coupling of the Larmor precession to the correlated motion of pairs of nuclear spins in noble metals, Phys. Rev. B 48, 14020–14022 (1993).

    Google Scholar 

  34. H. Cheng, Spin absorption of solids, Phys. Rev. 124, 1359–1367 (1961).

    Google Scholar 

  35. A. G. Anderson, Nonresonant nuclear spin absorption in lithium, sodium, and aluminium, Phys. Rev. 115, 863–868 (1959).

    Google Scholar 

  36. Yong-Jihn Kim and A. W. Overhauser, Magnetic impurities in superconductors: A theory with different predictions, Phys. Rev. B 49, 15799–15812 (1994).

    Google Scholar 

  37. L. C. Hebel and C. P. Slichter, Nuclear spin relaxation in normal and superconducting aluminum, Phys. Rev. 113, 1504–1519 (1959).

    Google Scholar 

  38. T. A. Knuuttila, J. T. Tuoriniemi, and K. Lefmann, Relaxation of polarized nuclei in superconducting rhodium, Phys. Rev. Lett. 85, 2573–2576 (2000).

    Google Scholar 

  39. K. K. Nummila, J. T. Tuoriniemi, R. T. Vuorinen, K. Lefmann, A. Metz, and F. B. Rasmussen, Neutron diffraction studies of nuclear magnetic ordering in silver, J. Low Temp. Phys. 112, 73–116 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knuuttila, T.A., Tuoriniemi, J.T., Lefmann, K. et al. Polarized Nuclei in Normal and Superconducting Rhodium. Journal of Low Temperature Physics 123, 65–102 (2001). https://doi.org/10.1023/A:1017545531677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017545531677

Keywords

Navigation