Skip to main content
Log in

Effect of catalyst type on the kinetics of the photoelectrochemical disinfection of water inoculated with E. coli

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The rates of the photoelectrochemical disinfection of Escherichia coli at TiO2 electrodes were measured as a function of concentration and applied potential. Two different TiO2 photoelectrodes were used: a thermally treated titanium plate and a porous film prepared by a sol–gel hydrolysis technique. The kinetics of the disinfection process were found to depend upon the nature of the electrode material. For the thermal film they were first order, and half order for the sol–gel film. It was also found that the catalytic activity per unit surface area of catalyst is many orders of magnitude greater than that observed using TiO2 slurries; this was attributed to the reduced rate of electron-hole recombination afforded by the application of a small potential bias (∼1 V vs Ag/AgCl), and hence the exploitation of the electric field enhancement (EFE) effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Matsunaga and M. Okochi, Environ. Sci. Technol. 29 (1995) 501.

    Google Scholar 

  2. L.A. Lawton and P.K.J. Robertson, Chem. Soc. Rev. 28 (1999) 217.

    Google Scholar 

  3. P.A. Christensen and G.M. Walker, ‘Opportunities for the UK in Solar Detoxification’, ETSU s/P4/00249/REP (1996).

  4. A.T. Campbell, L.J. Robertson, M.R. Snowball and H.V. Smith, Wat. Res. 29 (1995) 2583.

    Google Scholar 

  5. N.A. Simmons, Biologist 38 (1998) 147.

    Google Scholar 

  6. J.C. Ireland, ‘Photocatalytic Purification and Treatment of Water and Air’ (Elsevier, 1993) pp. 557–571.

  7. I.M. Butterfield, P.A. Christensen, A. Hamnett, K.E. Shaw, G.M. Walker, S.A. Walker and C.R. Howarth, J. Appl. Electrochem. 27 (1997) 385.

    Google Scholar 

  8. S.A. Walker, P.A. Christensen, K.E. Shaw and G.M. Walker, J. Electroanal. Chem. 393 (1995) 137.

    Google Scholar 

  9. M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann, Chem. Rev. 95 (1995) 69.

    Google Scholar 

  10. T. Matsunaga, T. Nakajima, R. Tomada and H. Wake, FEMS Microbiol. Lett. 29 (1985) 211.

    Google Scholar 

  11. C. Wei, W.Y. Lin, Z. Zulkarnain, N.E. Williams, K. Zhu, A.P. Kruzic, R.L. Smith and K. Rajeshwar, Environ. Sci. Technol. 28 (1994) 934.

    Google Scholar 

  12. L. Belhacova, J. Krysa, J. Geryk and J. Jirkovsky, J. Chem. Technol. Biotechnol. 74 (1999) 149.

    Google Scholar 

  13. T. Matsunaga, R. Tomoda, T. Nakajima, N. Kamaura and T. Komine, Appl. Environ. Microbiol. 54 (1988) 1330.

    Google Scholar 

  14. T. Matsunaga, R. Tomoda, T. Nakajima and H. Wake, Microbiol. Lett. 29 (1985) 211.

    Google Scholar 

  15. P. Zhang, R.J. Scrudato and G. Germano, Chemosphere, 28 (1994) 607.

    Google Scholar 

  16. J.C. Ireland, P. Klostermann, E.W. Rice and R.M. Clark, Appl. Environ, Microbiol. 59 (1993) 1668.

    Google Scholar 

  17. A. Hamnett, Comprehensive Chemical Kinetics 27 (1987) 61.

    Google Scholar 

  18. J.G. Calvert and J.N. Pitts, ‘Photochemistry’, (J. Wiley & Sons, New York, 1966) pp. 782–785.

    Google Scholar 

  19. Y. Choi, S. Seo, K. Chjo, Q. Choi and S. Park, J. Electrochem. Soc. 139 (1992) 1803.

    Google Scholar 

  20. T. Yoko, A. Yuasa, K. Kamiya and S. Sato, J. Electrochem. Soc. 138 (1991) 2279.

    Google Scholar 

  21. L. Kavan and M. Gratzel, Electrochim. Acta 40 (1995) 643.

    Google Scholar 

  22. The Standing Committee of Analysts, ‘The Microbiology of Water 1994, Part 1-Drinking Water’ (HMSO, London, 1994).

    Google Scholar 

  23. O. Legrini, E. Oliveros and A.M. Braun, Chem. Rev. 93 (1993) 671.

    Google Scholar 

  24. K. Rajeshwar, J. Appl. Electrochem. 25 (1995) 1067.

    Google Scholar 

  25. K. Vinodgopal, U. Stafford, K.A. Gray, P.V. Kamat, J. Phys. Chem. 98 (1994) 6797.

    Google Scholar 

  26. A.M. Mills and S. Le Hunte, J. Photochem. Photobiol. 108 (1997) 1.

    Google Scholar 

  27. P.A. Christensen, A. Dilks, T.A. Egerton and J. Temperley, J. Mater. Sci. 35 (2000) 5353.

    Google Scholar 

  28. P.A. Christensen, T.P. Curtis, B. Place and G.M. Walker, Water Res., submitted.

  29. M.L. Garcia Gonzalez and P. Salvador, J. Phys. Chem. 88 (1984) 3696.

    Google Scholar 

  30. M.L. Garcia Gonzalez and P. Salvador, J. Electroanal. Chem. 325 (1992) 369.

    Google Scholar 

  31. C.J. King and T.A. Egerton, J. Oil Col. Chem. Assoc. 62 (1979) 386.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harper, J., Christensen, P., Egerton, T. et al. Effect of catalyst type on the kinetics of the photoelectrochemical disinfection of water inoculated with E. coli. Journal of Applied Electrochemistry 31, 623–628 (2001). https://doi.org/10.1023/A:1017539328022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017539328022

Navigation