Skip to main content
Log in

Recent approaches to global optimization problems through Particle Swarm Optimization

  • Published:
Natural Computing Aims and scope Submit manuscript

Abstract

This paper presents an overview of our most recent results concerning the Particle Swarm Optimization (PSO) method. Techniques for the alleviation of local minima, and for detecting multiple minimizers are described. Moreover, results on the ability of the PSO in tackling Multiobjective, Minimax, Integer Programming and ℓ1 errors-in-variables problems, as well as problems in noisy and continuously changing environments, are reported. Finally, a Composite PSO, in which the heuristic parameters of PSO are controlled by a Differential Evolution algorithm during the optimization, is described, and results for many well-known and widely used test functions are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahonen H, Desouza PA and Garg VK (1997) A Genetic Algorithm for Fitting Lorentzian Line-Shapes in Mossbauer-Spectra 124(4): 633–638

    Google Scholar 

  • Angeline PJ (1997) Tracking Extrema in Dynamic Environments. Proceedings of International Conference on Evolutionary Programming

  • Angeline PJ (1998) Evolutionary optimization versus Particle Swarm Optimization: Philosophy and performance differences. In: Porto VW, Saravanan N,Waagen D and Eiben AE (eds) Evolutionary Programming VII, pp. 601–610. Springer

  • Arnold DV (2001) Local Performance of Evolution Strategies in the Presence of Noise. Ph.D. thesis, Department of Computer Science, University of Dortmund, Germany

    Google Scholar 

  • Bäck T (1996) Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York

    Google Scholar 

  • Bäck T, Fogel D and Michalewicz Z (1997) Handbook of Evolutionary Computation. IOP Publishing and Oxford University Press, New York

    Google Scholar 

  • Bandler JW and Charalambous C (1974) Nonlinear programming using minimax techniques. J. Optim. Th. Appl. 13: 607–619

    Google Scholar 

  • Banzhaf W, Nordin P, Keller RE and Francone FD (1998) Genetic Programming-An Introduction. Morgan Kaufman, San Francisco

    Google Scholar 

  • Bertsekas DP (1976) Minimax Methods Based on Approximations. Proceedings 1976 John Hopkins Conf. Inform. Sciences and Systems

  • Bertsekas DP (1976) A new algorithm for solution of nonlinear resistive networks involving diodes. IEEE Trans. Circ. Th. 23: 599–608

    Google Scholar 

  • Bertsekas DP (1977) Approximation procedures based on the method of multipliers. J. Optim. Th. Appl. 23: 487–510

    Google Scholar 

  • Beyer H-G (2000) Evolutionary algorithms in noisy environments: Theoretical issues and guidelines for practice. Comput. Methods Appl. Mech. Engrg. 186: 239–269

    Google Scholar 

  • Beyer H-G (2001) The Theory of Evolution Strategies. Springer, Berlin

    Google Scholar 

  • Beyer H-G and Schwefel H-P (2002) Evolution Strategies: A Comprehensive Introduction. Natural Computing, to appear

  • Blum EK (1989) Approximation of boolean functions by sigmoidal networks, Part I: XOR and other two-variable functions. Neural Computation 1: 532–540

    Google Scholar 

  • Bohren CF and Huffman DR (1983) Absorption and Scattering of Light by Small Particles. Wiley, New York

    Google Scholar 

  • Boutsinas B and Vrahatis MN (2001) Artificial nonmonotonic neural networks. Artificial Intelligence 132: 1–38

    Google Scholar 

  • Box GEP and Muller ME (1958) A note on the generation of random normal deviates. Ann. Math. Statistics 29: 610–611

    Google Scholar 

  • Britt HI and Luecke RH (1973) The estimation of parameters in nonlinear, implicit models. Technometrics 15: 233–247

    Google Scholar 

  • Burke J and Xu S (2000) An non-interior predictor-corrector path-following algorithm for the monotone linear complementarity problem. Math. Progr. 87: 113–130

    Google Scholar 

  • Bush TS, Catlow CRA and Battle PD (1995) Evolutionary programming techniques for predicting inorganic crystal-structures. J. Materials Chemistry 5(8): 1269–1272

    Google Scholar 

  • Carlisle A and Dozier G (2001) An Off-The-Shelf PSO. Proceedings of the Particle Swarm Optimization Workshop, pp. 1–6

  • Charalambous C and Conn AR (1978) An efficient method to solve the minimax problem directly. SIAM J. Numerical Analysis 15: 162–187

    Google Scholar 

  • Corana A, Marchesi M, Martini C and Ridella S (1987) Minimizing multimodal functions of continuous variables with the 'simulated annealing algorithm'. ACM Transactions on Mathematical Software 13(3): 262–280

    Google Scholar 

  • Demyanov VF and Molozemov VN (1974) Introduction to Minimax. Wiley, New York

    Google Scholar 

  • Drossos L, Ragos O, Vrahatis MN and Bountis TC (1974) Method for computing long periodic orbits of dynamical systems. Physical Review E 53: 1206–1211

    Google Scholar 

  • Du DZ and Pardalos PM (1995) Minimax and Applications. Kluwer, Dordrecht

    Google Scholar 

  • Eberhart RC and Kennedy J (1995) A New Optimizer Using Particle Swarm Theory, Proceedings Sixth Symposium on Micro Machine and Human Science, pp. 39–43. IEEE Service Center, Piscataway, NJ

    Google Scholar 

  • Eberhart RC and Shi Y (1998) Comparison between genetic algorithms and Particle Swarm Optimization. In: Porto VW, Saravanan N, Waagen D and Eiben AE (eds) Evolutionary Programming VII, pp. 611–616. Springer

  • Eberhart RC and Shi Y (2000) Comparing inertia weights and constriction factors in Particle Swarm Optimization. Proceedings of the Congress on Evolutionary Computating, pp. 84–88

  • Eberhart RC, Simpson P and Dobbins R (1996) Computational Intelligence PC Tools. Academic Press

  • Elster C and Neumaier A (1995) A grid algorithm for bound constrained optimization of noisy functions. IMA Journal of Numerical Analysis 15: 585–608

    Google Scholar 

  • Elster C and Neumaier A (1997) A method of trust region type for minimizing noisy functions. Computing 58: 31–46

    Google Scholar 

  • Facchinei F, Jiang H and Qi L (1999) A smoothing method for mathematical programs with equilibrium constraints. Math. Progr. 85: 107–134

    Google Scholar 

  • Fletcher R (1987) Practical Methods of Optimization. Wiley, New York

    Google Scholar 

  • Fogel D (1996) Evolutionary Computation: Towards a New Philosophy of Machine Intelligence. IEEE Press, Piscataway, NJ

    Google Scholar 

  • Forgó F (1988) Nonconvex Programming. Akadémiai Kiadó, Budapest

  • Gall DA (1966) A practical multifactor optimization criterion. In: Levi A and Vogl TP (eds) Recent Advances in Optimization Techniques, pp. 369–386

  • Gilmore T and Keeley CT (1995) An implicit filtering algorithm for optimization of functions with many local minima. SIAM J. Optim. 5: 269–285

    Google Scholar 

  • Glankwahmdee A, Liebman JS and Hogg GL (1979) Unconstrained discrete nonlinear programming. Engineering Optimization 4: 95–107

    Google Scholar 

  • Goldberg D (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Reading, MA

    Google Scholar 

  • Hansen ER (1992) Global Optimization Using Interval Analysis. Marcel Dekker, New York

    Google Scholar 

  • Hansen N (1998) Verallgemeinerte individuelle Schrittweitenregelung in der Evolutionsstrategie. Mensch & Buch, Berlin

    Google Scholar 

  • Hansen N and Ostermeier A (2001) Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9: 159–195

    Google Scholar 

  • Heppner F and Grenander U (1990) A stochastic nonlinear model for coordinate bird flocks. In: Krasner S (ed) The Ubiquity of Chaos. AAAS Publications, Washington, DC

    Google Scholar 

  • Hirriart JB (1978) On optimality conditions in non-differentiable programming. Mathematical Programming 14: 73–86

    Google Scholar 

  • Hodgson RJW (2000) Genetic algorithm approach to particle identification by light scattering. J. Colloid and Interface Science 229: 399–406

    Google Scholar 

  • Hooke R and Jeeves TA (1961) Direct search solution of numerical and statistical problems. J. ACM 8: 212–229

    Google Scholar 

  • Horst R and Pardalos PM (1995) Handbook of Global Optimization. Kluwer Academic Publishers, London

    Google Scholar 

  • Horst R and Tuy H (1996) Global Optimization-Deterministic Approaches. Springer, New York

    Google Scholar 

  • Jaynes E (1979) Where do we stand on maximum entropy? In: Levine R and Tribus M (eds) The Maximum Entropy Formalism, pp. 15–118. MIT Press, Cambridge

    Google Scholar 

  • Jin Y, Olhofer M and Sendhoff B (2001) Dynamic Weighted Aggregation for Evolutionary Multi-Objective Optimization: Why Does ItWork and How? Proceedings GECCO 20001 Conference, to appear

  • Kalantonis VS, Perdios EA, Perdiou AE and Vrahatis MN (2001) Computing with certainty individual members of families of periodic orbits of a given period. Celestial Mechanics and Dynamical Astronomy 80: 81–96

    Google Scholar 

  • Kelahan RC and Gaddy JL (1978) Application of the adaptive random search to discrete and mixed integer optimization. Int. J. Num. Meth. Engin. 12: 289–298

    Google Scholar 

  • Kelley R (1999) Iterative Methods for Optimization. SIAM, Philadelphia

    Google Scholar 

  • Kennedy J 1998, The behavior of particles. In: Porto VW, Saravanan N, Waagen D and Eiben AE (eds) Evolutionary Programming VII, pp. 581–590. Springer

  • Kennedy J and Eberhart RC (1995) Particle Swarm Optimization. Proceedings IEEE International Conference on Neural Networks, IV: pp. 1942–1948. IEEE Service Center, Piscataway, NJ

    Google Scholar 

  • Kennedy J and Eberhart RC (2001) Swarm Intelligence. Morgan Kaufmann Publishers

  • Knowles JD and Corne DW (2000) Approximating the nondominated front using the pareto archived evolution strategies. Evolutionary Computation 8(2): 149–172

    Google Scholar 

  • Kort BW and Bertsekas DP (1972) A new penalty function algorithm for constrained minimization. Proceedings 1972 IEEE Conf. Decision and Control

  • Koza JR (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA

    Google Scholar 

  • Laskari EC, Parsopoulos KE and Vrahatis MN (2001) Determination of the heuristic parameters of the Particle Swarm Optimization method. Proceedings Numerical Algorithms Conference submitted

  • Laskari EC, Parsopoulos KE and Vrahatis MN (2002a) Particle Swarm Optimization for Minimax Problems. IEEE Congress on Evolutionary Computation, pp. 1576–1581

  • Laskari EC, Parsopoulos KE and Vrahatis MN (2002b) Particle Swarm Optimization for Integer Programming. IEEE Congress on Evolutionary Computation, pp. 1582–1587

  • Levy A, Montalvo A, Gomez S and Galderon A (1981) Topics in Global Optimization. Springer-Verlag, New York

    Google Scholar 

  • Li XS (1991) An aggregate function method for nonlinear programming. Science in China (A) 34: 1467–1473

    Google Scholar 

  • Lukšan L and Vlček J (2000) Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical Report No. 798, Institut of Computer Science, Academy of Sciences of the Czech Republic

  • Michalewicz Z (1994) Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin

    Google Scholar 

  • Millonas MM (1994) Swarms, phase transitions, and collective intelligence. In: Palaniswami M, Attikiouzel Y, Marks R, Fogel D and Fukuda T (eds) Computational Intelligence: A Dynamic System Perspective, pp. 137–151. IEEE Press, Piscataway, NJ

    Google Scholar 

  • More JJ, Garbow BS and Hillstrom KE (1981) Testing unconstrained optimization software. ACM Transactions on Mathematical Software 7(1): 17–41

    Google Scholar 

  • Murray W and Overton ML (1980) A projected lagrangian algorithm for nonlinear minimax optimization. SIAM J. Scient. Stat. Comp. 1: 345–370

    Google Scholar 

  • Nelder JA and Mead R (1965) A simplex method for function minimization. Computer Journal 7: 308–313

    Google Scholar 

  • Nemhauser GL, Rinooy Kan AHG and Todd MJ (eds) (1989) Handbooks in OR & MS, Vol. 1: Optimization. Elsevier

  • Nocedal J (1991) Theory of algorithms for unconstrained optimization. In: Iserles A (ed) Acta Numerica, pp. 199–242. Cambridge University Press, Cambridge

    Google Scholar 

  • Osborne MR and Watson GA (1969) An algorithm for minimax approximation in the nonlinear case. Comput. J. 12: 63–68

    Google Scholar 

  • Parsopoulos KE, Plagianakos VP, Magoulas GD and Vrahatis MN (2001a) Improving the Particle Swarm Optimizer by Function “Stretching”. In: Hadjisavvas N and Pardalos PM (eds) Advances in Convex Analysis and Global Optimization, pp. 445–457. Kluwer Academic Publishers

  • Parsopoulos KE, Plagianakos VP, Magoulas GD and Vrahatis MN (2001b) Objective Function “Stretching” to alleviate convergence to local minima. Nonlinear Analysis, TMA 47(5): 3419–3424

    Google Scholar 

  • Parsopoulos KE, Plagianakos VP, Magoulas GD and Vrahatis MN (2001c) Stretching technique for obtaining global minimizers through Particle Swarm Optimization. Proceedings of the Particle Swarm Optimization workshop, pp. 22–29

  • Parsopoulos KE, Laskari EC and Vrahatis MN (2001d) Solving ℓ1 norm errors-in-variables problems using Particle Swarm Optimization. In: Hamza MH (ed) Artificial Intelligence and Applications, pp. 185–190. IASTED/ACTA Press

  • Parsopoulos KE and Vrahatis MN (2001a) Modification of the Particle Swarm Optimizer for locating all the global minima. In: Kurkova V, Steele NC, Neruda R and Karny M (eds) Artificial Neural Networks and Genetic Algorithms, pp. 324–327. Springer, Wien

    Google Scholar 

  • Parsopoulos KE and Vrahatis MN (2001b) Particle Swarm Optimizer in noisy and continuously changing environments. In: Hamza MH (ed) Artificial Intelligence and Soft Computing, pp. 289–294. IASTED/ACTA Press

  • Parsopoulos KE and Vrahatis MN (2001c) Particle Swarm Optimization for imprecise problems. Proceedings of the 5th International Workshop on Mathematical Methods In Scattering Theory and Biomedical Technology, in press

  • Parsopoulos KE and Vrahatis MN (2002) Particle Swarm Optimization method in multiobjective problems. Proceedings ACM Symposium on Applied Computing (SAC 2002), pp. 603–607

  • Paszkowicz W (1996) Application of the smooth genetic algorithm for indexing powder patterns: Test for the orthorhombic system. Materials Science Forum 228(1 & 2): 19–24

    Google Scholar 

  • Plagianakos VP and Vrahatis MN (1999) Training neural networks with 3–bit integer weights. In: Bahnzaf W, Daida J, Eiben AE, Garzon MH, Honavar V, Jakiela M and Smith RE (eds) Proceedings of Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 910–915. Morgan Kaufmann

  • Plagianakos VP and Vrahatis MN (2000) Training neural networks with threshold activation functions and constrained integer weights. Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN 2000)

  • Peng J-M and Lin Z (1999) A non-interior continuation method for generalized linear complementarity problems. Math. Progr. 86: 533–563

    Google Scholar 

  • Pierre DA (1986) Optimization Theory and Applications. Dover Publications

  • Pintér JD (1996) Global Optimization in Action. Academic Publishers

  • Polak E (1987) On the mathematical foundations of nondifferentiable optimization. SIAM Review 29: 21–89

    Google Scholar 

  • Polak E (1997) Optimization: Algorithms and Consistent Approximations. Springer-Verlag, New York

    Google Scholar 

  • Powell MJD (1988) A review of algorithms for nonlinear equations and unconstrained optimization. Proceedings ICIAM, pp. 220–232

  • Powell MJD (1992) A direct search optimization method that models the objective and constraint functions by linear interpolation. DAMTP 1992/NA5, Department of Applied Mathematics and Theoretical Physics, University of Cambridge, England

    Google Scholar 

  • Rao SS (1996) Engineering optimization-theory and practice. Wiley

  • Rechenberg I (1994) Evolution Strategy. In: Zurada JM, Marks RJ II and Robinson C (eds) Computational Intelligence: Imitating Life. IEEE Press, Piscataway, NJ

    Google Scholar 

  • ReevesWT (1983) Particle systems-a technique for modelling a class of fuzzy objects. ACM Transactions on Graphics 2(2): 91–108

    Google Scholar 

  • Reynolds CW (1987) Flocks, herds, and schools: a distributed behavioral model. Computer Graphics 21(4): 25–34

    Google Scholar 

  • Rudolph G (1994) An evolutionary algorithm for integer programming. In: Davidor Y, Schwefel H-P, Männer R (eds), pp. 139–148. Parallel Problem Solving from Nature 3 Rudolph G (1997) Convergence properties of evolutionary algorithms. Verlag Dr. Kovač, Hamburg Salomon R (1998) Evolutionary search and gradient search: Similarities and differences. IEEE Trans. Evolutionary Computation 2: 45–55

    Google Scholar 

  • Schaffer JD (1985) Genetic Algorithms and their Applications: Proceedings of the first Int. Conf. on Genetic Algorithms, pp. 93–100

  • Schwefel H-P (1975) Evolutionsstrategie und numerische Optimierung. Technical University of Berlin, Department of Process Engineering, Dr.-Ing. Thesis

  • Schwefel H-P (1981) Numerical Optimization of Computer Models. Wiley, Chichester

    Google Scholar 

  • Schwefel H-P (1995) Evolution and Optimum Seeking. Wiley, New York

    Google Scholar 

  • Schwefel H-P and Rudolph G (1995) Contemporary evolution strategies. In: Morana F, Moreno A, Merelo J and Chacon P (eds), pp. 893–907. Advances in Artificial Life, Proceedings 3rd ECAL

  • Shi Y and Eberhart RC (1998) Parameter selection in Particle Swarm Optimization. In: Porto VW, Saravanan N, Waagen D and Eiben AE (eds) Evolutionary Programming VII, pp. 611–616. Springer

  • Shi Y and Eberhart RC (1998) A modified Particle Swarm Optimizer. Proceedings of the 1998 IEEE Conference on Evolutionary Computation. AK, Anchorage

  • Skinner AJ and Broughton JQ (1995) Neural networks in computational materials science: Training algorithms. Modelling and Simulation in Material Science and Engineering 3(3): 371–390

  • Snyman JA and Fatti LP (1987) A multi-start global minimization algorithm with dynamic search trajectories. J. of Optimization Theory and Applications 54(1): 121–141

    Google Scholar 

  • Spall JC (1992) Multivariate stochastic approximation using a simultaneous perturbation gradient approximation'. IEEE Trans. Automatic Control 37: 332–341

    Google Scholar 

  • Spall JC (1998a) Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans. Aerospace and Electronic Systems 34: 817–823

    Google Scholar 

  • Spall JC (1998b) An overview of the simultaneous perturbation method for efficient optimization. Johns Hopkins APL Technical Digest 19: 482–492

    Google Scholar 

  • Storn R and Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optimization 11: 341–359

    Google Scholar 

  • Swinehart K, Yasin M and Guimaraes E (1996) Applying an analytical approach to shop-floor scheduling: A case-study. Int. J. of Materials & Product Technology 11(1–2): 98–107

    Google Scholar 

  • Torczon V (1989) A direct search algorithm for parallel machines. Ph.D. thesis, Department of Mathematical Sciences, Rice University, Houston, USA

    Google Scholar 

  • Torczon V (1991) On the convergence of the multidimensional search algorithm. SIAM J. Optimization 1: 123–145

    Google Scholar 

  • Törn A and Žilinskas A (1989) Global Optimization. Springer-Verlag, Berlin

    Google Scholar 

  • Vrahatis MN, Androulakis GS, Lambrinos JN and Magoulas GD (2000) A class of gradient unconstrained minimization algorithms with adaptive stepsize. Journal of Computational and Applied Mathematics 114: 367–386

    Google Scholar 

  • Vrahatis MN, Androulakis GS and Manoussakis ME (1996) A new unconstrained optimization method for imprecise function and gradient values. Journal of Mathematical Analysis and Applications 197: 586–607

    Google Scholar 

  • Vrahatis MN, Perdiou AE, Kalantonis VS, Perdios AE, Papadakis K, Prosmiti R and Farantos SC (2001) Application of the characteristic bisection method for locating and computing periodic orbits in molecular systems. Computer Physics Communications 138: 53–68

    Google Scholar 

  • Waren AD, Lasdon LS and Suchman DF (1967) Optimization in engineering design. Proceedings IEEE 55: 1885–1897

    Google Scholar 

  • Xu S (2001) Smoothing method for minimax problems. Comp. Optim. Appl. 20: 267–279

    Google Scholar 

  • Watson GA (1997) The use of the ℓ1 norm in nonlinear errors-in-variables problems. In: Van Huffel (ed) Proceedings of Recent Advances on Total Least Squares Techniques & Errorsin-Variables Modeling

  • Watson GA (1998) Choice of norms for data fitting and function approximation. Acta Numerica, pp. 337–377

  • Watson GA and Yiu KFC (1991) On the solution of the errors in variables problem using the ℓ1 norm. BIT 31: 697–710

    Google Scholar 

  • Wilson EO (1975) Sociobiology: The New Synthesis. Belknap Press, Cambridge, MA

    Google Scholar 

  • Zitzler E (1999) Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. Thesis, Swiss Federal Institute of Technology Zurich

  • Zitzler E, Deb K and Thiele L (2000) Comparison of multiobjective evolution algorithms: empirical results. Evolutionary Computation 8(2): 173–195

    Google Scholar 

  • Zuhe S, Neumaier A and Eiermann MC (1990) Solving minimax problems by interval methods. BIT 30: 742–751

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parsopoulos, K., Vrahatis, M. Recent approaches to global optimization problems through Particle Swarm Optimization. Natural Computing 1, 235–306 (2002). https://doi.org/10.1023/A:1016568309421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016568309421

Navigation