Skip to main content
Log in

NPZ Models of Plankton Dynamics: Their Construction, Coupling to Physics, and Application

  • Published:
Journal of Oceanography Aims and scope Submit manuscript

Abstract

Nutrient-phytoplankton-zooplankton (NPZ) models have been in use in oceanography for at least three decades, and are still a common research tool. Given the discoveries of the last two decades, particularly concerning the role of bacteria in the plankton, there are questions as to whether NPZ models can still be supported as a useful tool in planktonic research. Here I review the construction of NPZ models, and some of the physical platforms they have been coupled to. I then discuss the applications of NPZ-physical models, and conclude that they still constitute an important and viable research tool, provided that the questions being explored are clearly stated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abrams, P. A. and J. D. Roth (1994): The effects of enrichment of three-species food chains with nonlinear functional responses. Ecology, 75, 1118–1130.

    Article  Google Scholar 

  • Baretta, J. W., W. Ebenhoh and P. Ruardij (1995): The European Regional Seas Ecosystem Model, a complex marine ecosystem model. Netherlands Journal of Sea Research, 33, 233–246.

    Article  Google Scholar 

  • Carlotti, F. and K. U. Wolf (1998): A Lagrangian ensemble model of Calanus finmarchicus coupled with a 1–D ecosystem model. Fish. Oceanogr., 7, 191–204.

    Article  Google Scholar 

  • Caswell, H. and M. G. Neubert (1998): Chaos and closure terms in plankton food chain models. J. Plankton Res., 20, 1837–1845.

    Google Scholar 

  • Chen, C., D. A. Wiesenburg and L. Xie (1997): Influences of river discharge on biological production in the inner shelf. A coupled biological and physical model of the Louisiana-Texas shelf. J. Mar. Res., 55, 293–320.

    Article  Google Scholar 

  • Denman, K. L. and A. E. Gargett (1995): Biological/physical interactions in the upper ocean: the role of vertical and small scale transport processes. Annu. Rev. Fluid. Mech., 27, 225–255.

    Google Scholar 

  • Dippner, J. W. (1993): A Lagrangian model of phytoplankton growth dynamics for the Northern Adriatic Sea. Cont. Shelf Res., 13, 331–355.

    Article  Google Scholar 

  • Droop, M. R. (1973): Some thoughts on nutrient limitation in algae. J. Phycol., 9, 264–272.

    Article  Google Scholar 

  • Droop, M. R. (1983): 25 years of algal growth kinetics. Botanica Marina, 26, 99–112.

    Article  Google Scholar 

  • Dugdale, R. C. (1967): Nutrient limitation in the sea: dynamics, identification, and significance. Limnol. Oceanogr., 12, 685–695.

    Google Scholar 

  • Edwards, A. M. and J. Brindley (1996): Oscillatory behavior in a three-component plankton population model. Dyn. Stabil. Syst., 11, 347–370.

    Google Scholar 

  • Edwards, A. M. and J. Brindley (1999): Zooplankton mortality and the dynamical behaviour of plankton population models. Bull. Math. Biol., 61, 303–339.

    Article  Google Scholar 

  • Edwards, A. M. and A. Yool (2000): The role of higher predation in plankton population models. J. Plankton Res., 22, 1085–1112.

    Article  Google Scholar 

  • Edwards, C. A., H. P. Batchelder and T. M. Powell (2000a): Modeling microzooplankton and macrozooplankton dynamics within a coastal upwelling system. J. Plankton Res., 22, 1619–1648.

    Article  Google Scholar 

  • Edwards, C. A., T. A. Powell and H. P. Batchelder (2000b): The stability of an NPZ model subject to realistic levels of vertical mixing. J. Mar. Res., 58, 37–60.

    Article  Google Scholar 

  • Eppley, R. W. and B. J. Peterson (1979): Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 282, 677–680.

    Article  Google Scholar 

  • Evans, G. T. (1978): Biological effects of vertical-horizontal interactions. p. 157–179. In Spatial Patterns in Plankton Communities, ed. by J. H. Steele, Plenum Press, New York.

    Google Scholar 

  • Evans, G. T. and J. S. Parslow (1985): A model of annual plankton cycles. Biol. Oceanogr., 3, 327–347.

    Google Scholar 

  • Evans, G. T., J. H. Steele and G. E. B. Kullenberg (1977): A preliminary model of shear diffusion and plankton populations. Scottish Fisheries Res. Proj. Report #9.

  • Flierl, G. R. and C. S. Davis (1993): Biological effects of Gulf Stream meandering. J. Mar. Res., 51, 529–560.

    Article  Google Scholar 

  • Franks, P. J. S. (1995): Coupled physical-biological models in oceanography. Rev. Geophys., Supp. July, 1177–1187.

  • Franks, P. J. S. (1997): New models for the exploration of biological processes at fronts. I.C.E.S. J. Mar. Sci., 54, 161–167.

    Article  Google Scholar 

  • Franks, P. J. S. and C. Chen (1996): Plankton production in tidal fronts: a model of Georges Bank in summer. J. Mar. Res., 54, 631–651.

    Article  Google Scholar 

  • Franks, P. J. S. and C. Chen (2000): A 3–D prognostic numerical model study of the Georges Bank ecosystem. Part II: biological-physical model. Deep-Sea Res. II, 48, 457–482.

    Article  Google Scholar 

  • Franks, P. J. S. and L. J. Walstad (1997): Plankton patches at fronts: a model of formation and response to wind events. J. Mar. Res., 55, 1–29.

    Article  Google Scholar 

  • Franks, P. J. S., J. S. Wroblewski and G. R. Flierl (1986a): Behavior of a simple plankton model with food-level acclimation by herbivores. Mar. Biol., 91, 121–129.

    Article  Google Scholar 

  • Franks, P. J. S., J. S. Wroblewski and G. R. Flierl (1986b): Prediction of phytoplankton growth in response to the frictional decay of a warm-core ring. J. Geophys. Res., 91C, 7603–7610.

    Google Scholar 

  • Hastings, A. and T. Powell (1991): Chaos in a 3–species food chain. Ecology, 72, 896–903.

    Article  Google Scholar 

  • Ishizaka, J. (1990): Coupling of coastal zone color scanner data to a physical-biological model of the south-eastern U.S. Continental Shelf ecosystem 3. Nutrient and phytoplankton fluxes and CZCS data assimilation. J. Geophys. Res., 95, 20201–20212.

    Google Scholar 

  • Jernigan, R. W. and C. P. Tsokos (1979): Phytoplankton modeling involving random rate constants. Part I: Deterministic setting. Intern. J. Env. Std., 14, 97–105.

    Google Scholar 

  • Jernigan, R. W. and C. P. Tsokos (1980): Phytoplankton modeling involving random rate constants. Part II: stochastic formulation. Intern. J. Env. Std., 15, 217–227.

    Google Scholar 

  • Kiefer, D. A. and C. A. Atkinson (1984): Cycling of nitrogen by phytoplankton: a hypothetical description based upon efficiency of energy conversion. J. Mar. Res., 42, 655–675.

    Article  Google Scholar 

  • Kishi, M. J. (1994): Prediction of phytoplankton growth in a warm-core ring using three dimensional ecosystem model. J. Oceanogr., 50, 489–498.

    Article  Google Scholar 

  • Klein, P. (1987): A simulation of some physical and biological interactions. p. 395–402. In Georges Bank, ed. by R. H. Backus and D. W. Bourne, The MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Lawson, L. M., Y. H. Spitz, E. E. Hofmann and R. B. Long (1995): A data assimilation technique applied to a predator-prey model. Bull. Math. Biol., 57, 593–617.

    Google Scholar 

  • Lewis, C. V. W., C. S. Davis and G. Gawarkiewicz (1994): Wind-forced biological-physical interactions on an isolated offshore bank. Deep-Sea Res. II, 41, 51–73.

    Article  Google Scholar 

  • Marra, J. and C. Ho (1993): Initiation of the spring bloom in the northeast Atlantic (47°N, 20°W): a numerical simulation. Deep-Sea Res. II, 40, 55–73.

    Article  Google Scholar 

  • McCann, K. and P. Yodzis (1994): Nonlinear dynamics and population disappearances. Am. Nat., 144, 873–879.

    Article  Google Scholar 

  • McGillicuddy, D. J., J. J. McCarthy and A. R. Robinson (1995a): Coupled physical and biological modeling of the spring bloom in the North-Atlantic. 1. Model formulation and one dimensional bloom processes. Deep-Sea Res. I, 42, 1313–1357.

    Article  Google Scholar 

  • McGillicuddy, D. J., A. R. Robinson and J. J. McCarthy (1995b): Coupled physical and biological modeling of the spring bloom in the North-Atlantic. 1. 3–dimensional bloom and post-bloom processes. Deep-Sea Res. I, 42, 1359–1398.

    Article  Google Scholar 

  • Murray, A. G. and J. S. Parslow (1999): The analysis of alternative formulations in a simple model of a coastal ecosystem. Ecol. Modelling, 119, 149–166.

    Article  Google Scholar 

  • Ohman, M. D. and H. J. Hirche (2001): Density-dependent mortality in an oceanic copepod population. Nature, 412, 638–641.

    Article  Google Scholar 

  • Parsons, T. R., R. J. LeBrasseur and J. D. Fulton (1967): Some observations on the dependence of zooplankton grazing on cell size and concentration of phytoplankton blooms. J. Oceanogr. Soc. Japan, 23, 10–17.

    Google Scholar 

  • Ruan, S. G. (1993): Persistence and coexistence in zooplankton-phytoplankton-nutrient models with instantaneous nutrient cycling. J. Math. Biol., 31, 633–654.

    Article  Google Scholar 

  • Ruan, S. G. (2001): Oscillations in plankton models with nutrient recycling. J. Theor. Biol., 208(1), 15–26.

    Article  Google Scholar 

  • Sjöberg, S. (1977): Are pelagic ecosystems inherently unstable? A model study. Ecol. Modelling, 3, 17–37.

    Article  Google Scholar 

  • Steele, J. H. and B. W. Frost (1977): The structure of plankton communities. Phil. Trans. R. Soc. Lond., 280, 485–534.

    Google Scholar 

  • Steele, J. H. and E. W. Henderson (1981): A simple plankton model. Am. Nat., 117, 676–691.

    Article  Google Scholar 

  • Steele, J. H. and E. W. Henderson (1992): The role of predation in plankton models. J. Plankton Res., 14, 157–172.

    Google Scholar 

  • Truscott, J. E. and J. Brindley (1994): Equilibria, stability and excitability in a general class of plankton population models. Phil. Trans. R. Soc. Lond., A347, 703–718.

    Article  Google Scholar 

  • Wroblewski, J. S. (1989): A model of the spring bloom in the North Atlantic and its impact on ocean optics. Limnol. Oceanogr., 34, 1563–1571.

    Article  Google Scholar 

  • Wroblewski, J. S., J. L. Sarmiento and G. R. Flierl (1988): An ocean basin scale model of plankton dynamics in the North Atlantic 1. Solutions for the climatological oceanographic conditions in May. Global Biogeochem. Cycles, 2, 199–218.

    Article  Google Scholar 

  • Yoshimori, A. and M. J. Kishi (1994): Effects of interaction between two warm-core rings on phytoplankton distribution. Deep-Sea Res. I, 41, 1039–1052.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. S. Franks.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franks, P.J.S. NPZ Models of Plankton Dynamics: Their Construction, Coupling to Physics, and Application. Journal of Oceanography 58, 379–387 (2002). https://doi.org/10.1023/A:1015874028196

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015874028196

Navigation