Skip to main content
Log in

AFLP in Triticum aestivum L.: patterns of genetic diversity and genome distribution

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The amplified fragment length polymorphism (AFLP) procedure was applied to a diverse panel of wheat (Triticum aestivum L. em. Thell.) accessions and sixty-nine of the recombinant inbred lines (RILs) from the widely used genetic mapping population derived from the cross of Opata 85 and W7984. Most (76.8%) bands were monomorphic among T. aestivum accessions. The majority of bands monomorphic in T. aestivum also were present in the synthetic wheat parent (W7984). Ten primer pairs generated 153 polymorphic AFLP bands, 140 of which could be assigned to a chromosome location and were relatively evenly distributed on the genetic linkage map. AFLP loci in T. aestivum were distributed throughout the genome; they generally have only one detectable sequence variant; and they exhibit monogenic dominant mendelian inheritance. Frequencies of polymorphic bands in the germplasm sampled are in the range that enables informative cluster analyses as well as map-based diversity and association analysis studies. AFLP bands mapped to individual loci in the Opata 85/W7984 RIL population will frequently be polymorphic in other crosses or germplasm, irrespective of whether the band arises from the T. aestivum parent or the synthetic wheat parent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bai, G.H., F.L. Kolb, G. Shaner & L.L. Domier, 1999. Ampli-fied fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 89: 343–348.

    CAS  PubMed  Google Scholar 

  • Barrett, B.A. & K.K. Kidwell, 1998. AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci 38: 1261–1271.

    Article  CAS  Google Scholar 

  • Becker, J., P. Vos, M. Kuiper, F. Salamini, & M. Heun, 1995. Combined mapping of AFLP and RFLP markers in barley. Mol Gen Genet 249: 65–73.

    Article  PubMed  CAS  Google Scholar 

  • Beer, S.C., Siripoonwiwat W., L. S. O'Donoughue, E. Souza, D. Matthews & M.E. Sorrells, 1997. Association between molecular markers and quantitative traits in an oat gerplasm pool: can we infer linkage? J Agr Genet 3.

  • Bohn, M., H.F. Utz & A.E. Melchinger, 1999. Genetic similarities among winter wheat cultivars determined on the basis of RFLPs, AFLPs, and SSRs and their use for predicting progeny variance. Crop Sci 39: 228–237.

    Article  CAS  Google Scholar 

  • Boivin, K., M. Deu, J.-F. Rami, G. Trouche, & P. Hamon, 1999. Towards a saturated sorghum map using RFLP and AFLP markers. Theor Appl Genet 98: 320–328.

    Article  CAS  Google Scholar 

  • Burkhamer, R.L., S.P. Lanning, R.J. Martens, J.M. Martin & L.E. Talbert, 1998. Predicting progeny variance from parental divergence in hard red spring wheat. Crop Sci 38: 243–248.

    Article  Google Scholar 

  • Cho, Y.G., S.R. McCouch, M. Kuiper, M.-R. Kang, J. Pot, J.T.M. Groenen & M.Y. Eun, 1998. Integrated map of AFLP, SSLP and RFLP markers using a recombinant inbred population of rice (Oryza sativa L.). Theor Appl Genet 97: 370–380.

    Article  CAS  Google Scholar 

  • Cnops, G., B. denBoer, A. Gerats, M. VanMontagu & M. VanLijsebettens, 1996. Chromosome landing at the Arabidopsis TORNAD01 locus using an AFLP-based strategy. Mol Gen Genet 253: 32–41.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R.P., J.W. McNichol, E. Baird, A. Booth, P. Lawrence, B. Thomas & W. Powell, 1997. The use of AFLPs to examine genetic relatedness in barley. Mol Breeding 3: 359–369.

    Article  CAS  Google Scholar 

  • Hartl, L., V. Mohler, F.J. Zeller, S.L.K. Hsam & G. Schweizer, 1999. Identification of AFLP markers closely linked to the powdery mildew resistance genes Pm1c and Pm4a in common wheat (Triticum aestivum L.). Genome 42: 322–329.

    Article  CAS  Google Scholar 

  • Heun, M., R. SchaferPregl, D. Klawan, R. Castagna, M. Accerbi, B. Borghi & F. Salamini, 1997. Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278: 1312–1314.

    Article  CAS  Google Scholar 

  • Jaccard, P., 1901. Distribution de la flore alpine dans le Bassin des Dranes et dans quelques régions voisines. Bull Soc vand Sci Nat 37: 241–272.

    Google Scholar 

  • Jones, C.J., K.J. Edwards, S. Castaglione, M.O. Winfield, F. Sala, C. van deWiel, G. Bredemeijer, B. Vosman, M. Matthes, A. Daly, R. Brettschneider, P. Bettini, M. Buiatti, E. Maestri, A. Malcevschi, N. Marmiroli, R. Aert, G. Volckaert, J. Rueda, R. Linacero, A. Vazquez & A. Karp, 1997. Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breeding 3: 381–390.

    Article  CAS  Google Scholar 

  • Keim, P., J.M. Schupp, S.E. Travis, K. Clayton, T. Zhu, L. Shi, A. Ferreira & D.M. Webb, 1997. A high-density soybean genetic map based on AFLP markers. Crop Sci 37: 537–543.

    Article  CAS  Google Scholar 

  • Law, J.R., P. Donini, R.M.D. Koebner, C.R. James & R.J. Cooke, 1998. DNA profiling and plant variety registration. III: The statistical assessment of distinctness in wheat using amplified fragment length polymorphisms. Euphytica 102: 335–342.

    Article  CAS  Google Scholar 

  • Lincoln, S., 1992. Constructing genetic maps with MAPMAKER 3.0b, 3rd edn. Whitehorse Institute Technical Report, Whitehouse Institute, Cambridge, Mass.

    Google Scholar 

  • Lu, Z.X., B. Sosinski, G.L. Reighard, W.V. Baird & A.G. Abbott, 1998. Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41: 199–207.

    Article  CAS  Google Scholar 

  • Ma, Z.Q. & N.L.V. Lapitan, 1998. A comparison of amplified and restriction fragment length polymorphism in wheat. Cereal Res Commun 26: 7–13.

    Google Scholar 

  • Mackill, D.J., Z. Zhang, E.D. Redona & P.M. Colowit, 1996. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome 39: 969–977.

    PubMed  CAS  Google Scholar 

  • Maheswaran, M., P.K. Subudhi, S. Nandi, J.C. Xu, A. Parco, D.C. Yang & N. Huang, 1997. Polymorphism, distribution, and segregation of AFLP markers in a doubled haploid rice population. Theor Appl Genet 94: 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Marino, C.L., J.C. Nelson, Y.H. Lu, M.E. Sorrells, P. Leroy, N.A. Tuleen, C.R. Lopes & G.E. Hart, 1996. Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39: 359–366.

    CAS  PubMed  Google Scholar 

  • McCouch, S.R., G. Kochert, Z.H. Yu, Z.Y. Wang, G.S. Khush, W.R. Coffman & S.D. Tanksley, 1988. Molecular mapping of rice chromosomes. Theor Appl Genet 76: 815–829.

    Article  CAS  Google Scholar 

  • Menéndez, C.M., A.E. Hall & P. Gepts, 1997. A genetic linkage map of cowpea (Vigna unguiculata) developed from a cross between two inbred, domesticated lines. Theor Appl Genet 95: 1210–1217.

    Article  Google Scholar 

  • Milbourne, D., R. Meyer, J.E. Bradshaw, E. Baird, N. Bonar, J. Provan, W. Powell & R. Waugh, 1997. Comparison of PCRbased marker systems for the analysis of genetic relationships in cultivated potato. Mol Breeding 3: 127–136.

    Article  CAS  Google Scholar 

  • Miller, J.C. & S.D. Tanksley, 1990. Effect of different restriction enzymes, probe source, and probe length on detecting restriction fragment length polymorphism in tomato. Theor Appl Genet 80: 385–389.

    CAS  Google Scholar 

  • Murray, M.G. & W.F. Thompson, 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8: 4321–4325.

    PubMed  CAS  Google Scholar 

  • Nelson, J.C., M.E. Sorrells, A.E. Van Deynze, Y.H. Lu, M. Atkinson, M. Bernard, P. Leroy, J.D. Faris & J.A. Anderson, 1995b. Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141: 721–731.

    PubMed  CAS  Google Scholar 

  • Nelson, J.C., A.E. Van Deynze, E. Autrique, M.E. Sorrells, Y.H. Lu, S. Negre, M. Bernard & P. Leroy, 1995a. Molecular mapping of wheat: homoeologous group 3. Genome 38: 525–533.

    CAS  PubMed  Google Scholar 

  • Nelson, J.C., A.E. Van Deynze, E. Autrique, M.E. Sorrells, Y.H. Lu, M. Merlino, M. Atkinson & P. Leroy, 1995c. Molecular mapping of wheat: homoeologous group 2. Genome 38: 516–524.

    CAS  PubMed  Google Scholar 

  • Parker, G.D., K.J. Chalmers, A.J. Rathjen, & P. Langridge, 1998. Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor Appl Genet 97: 238–245.

    Article  CAS  Google Scholar 

  • Paull, J.G., K.J. Chalmers, A. Karakousis, J.M. Kretschmer, S. Manning & P. Langridge, 1998. Genetic diversity in Australian wheat varieties and breeding material based on RFLP data. Theor Appl Genet 96: 435–446.

    Article  CAS  Google Scholar 

  • Qi, X., P. Stam & P. Lindhout, 1998. Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theor Appl Genet 96: 376–384.

    Article  CAS  Google Scholar 

  • Rohlf, F.J., 1997. NTSYS-pc: numerical taxonomy and multivariate analysis system. version 2.00. Exeter spftware, Setauket, New York.

    Google Scholar 

  • Röder, M.S., V. Korzun, K. Wendehake, J. Plaschke, M.H. Tixier, P. Leroy & M.W. Ganal, 1998. A microsatellite map of wheat. Genetics 149: 2007–2023.

    PubMed  Google Scholar 

  • Schondelmaier, J., G. Steinrücken & C. Jung, 1996. Integration of AFLP markers into a linkage map of sugar beet (Beta vulgaris L). Plant Breeding 115: 231–237.

    Article  CAS  Google Scholar 

  • Shan, X., T.K. Blake & L.E. Talbert, 1999. Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98: 1072–1078.

    Article  CAS  Google Scholar 

  • Singh, S., T.S. Grewal, H. Singh, M. Sodhi, & H.S. Dhaliwal, 1999. Identification of amplified fragment length polymorphism markers associated with Karnal bunt (Neovossia indica) resistance in bread wheat. Indian J Agr Sci 69: 497–501.

    CAS  Google Scholar 

  • Staub, J.E., F.C. Serquen & M. Gupta, 1996. Genetic markers, map construction, and their application in plant breeding. Hortscience 31: 729–741.

    CAS  Google Scholar 

  • Talbert, L.E., N.K. Blake, P.W. Chee, T.K. Blake & G.M. Magyar, 1994. Evaluation of sequence-tagged-site PCR products as molecular markers in wheat. Theor Appl Genet 87: 789–794.

    Article  CAS  Google Scholar 

  • Tanksley, S.D., M.W. Granal, J.P. Prince, M.C. de Vicente, M.W. Bonierbale, P. Broun, T.M. Foulton, J.J. Giovannoni, S. Grandillo, G.B. Martin, R. Messeguer, J.C. Miller, L. Miller, A.G. Paterson, O. Pineda, M.S. Röder, R.A. Wing, W. Wu, N.D. Young, 1992. High-density molecular linkage maps of the tomato and potato genomes. Genetics 132: 1141–1160.

    PubMed  CAS  Google Scholar 

  • van Eck, H.J., J. Rouppe van der Voort, J. Draaistra, P. van Zandvoort, E. van Enckevort, B. Segers, J. Peleman, E. Jacobsen, J. Helder, J. Bakker, 1995. The inheritance and chromosomal localization of AFLP markers in a non-inbred potato offspring. Mol Breeding 1: 397–410.

    Article  CAS  Google Scholar 

  • Van Deynze, A.E., J. Dubcovsky, K.S. Gill, J.C. Nelson, M.E. Sorrells, J. Dvorák, B.S. Gill, E.S. Lagudah, S.R. McCouch & R. Appels, 1995. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38: 45–59.

    CAS  Google Scholar 

  • Voorrips, R.E., M.C. Jongerius & H.J. Kanne, 1997. Mapping of two genes for resistance to clubroot (Plasmodiophora brassicae) in a population of doubled haploid lines of Brassica oleracea by means of RFLP and AFLP markers. Theor Appl Genet 94: 75–82.

    Article  CAS  PubMed  Google Scholar 

  • Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper & M. Zabeau, 1995. AFLP - a new technique for DNA-fingerprinting. Nucleic Acids Res 23: 4407–4414.

    PubMed  CAS  Google Scholar 

  • Vuylsteke, M., R. Mank, R. Antonise, E. Bastiaans, M.L. Senior, C.W. Stuber, A.E. Melchinger, T. Lubberstedt, X.C. Xia, P. Stam, M. Zabeau & M. Kuiper, 1999. Two high-density AFLP (R) linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99: 921–935.

    Article  CAS  Google Scholar 

  • Wang, Y.H., C.E. Thomas & R.A. Dean, 1997. A genetic map of melon (Cucumis melo L.) based on amplified fragment length polymorphism (AFLP) markers. Theor Appl Genet 95: 791–798.

    Article  CAS  Google Scholar 

  • Waugh, R., N. Bonar, E. Baird, B. Thomas, A. Graner, P. Hayes & W. Powell, 1997. Homology of AFLP products in three mapping populations of barley. Mol Gen Genet 255: 311–321.

    Article  PubMed  CAS  Google Scholar 

  • Weber, J.L. & P.E. May, 1989. Polymorphisms based on length variations in blocks of (dC-dA).(dG-dT) repeats. Cytogenet Cell Genet 51: 1103–1104.

    Google Scholar 

  • Williams, J.G.K., A.R. Kubelik, K.J. Livak, J.A. Rafalski & S.V. Tingey, 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic-markers. Nucleic Acids Res 18: 6531–6535.

    PubMed  CAS  Google Scholar 

  • Young, W.P., J.M. Schupp & P. Keim, 1999. DNA methylation and AFLP marker distribution in the soybean genome. Theor Appl Genet 99: 785–790.

    Article  CAS  Google Scholar 

  • Zhu, J., M.D. Gale, S. Quarrie, M.T. Jackson & G.J. Bryan, 1998. AFLP markers for the study of rice biodiversity. Theor Appl Genet 96: 602–611.

    Article  CAS  Google Scholar 

  • Zhu, J.H., P. Stephenson, D.A. Laurie, W. Li, D. Tang & M.D. Gale, 1999. Towards rice genome scanning by map-based AFLP fingerprinting. Mol Gen Genet 261: 184–195.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazen, S.P., Leroy, P. & Ward, R.W. AFLP in Triticum aestivum L.: patterns of genetic diversity and genome distribution. Euphytica 125, 89–102 (2002). https://doi.org/10.1023/A:1015760802026

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015760802026

Navigation