Skip to main content
Log in

Multicomponent, Multiphase Thermodynamics of Swelling Porous Media with Electroquasistatics: II. Constitutive Theory

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In Part I macroscopic field equations of mass, linear and angular momentum, energy, and the quasistatic form of Maxwell's equations for a multiphase, multicomponent medium were derived. Here we exploit the entropy inequality to obtain restrictions on constitutive relations at the macroscale for a 2-phase, multiple-constituent, polarizable mixture of fluids and solids. Specific emphasis is placed on charged porous media in the presence of electrolytes. The governing equations for the stress tensors of each phase, flow of the fluid through a deforming medium, and diffusion of constituents through such a medium are derived. The results have applications in swelling clays (smectites), biopolymers, biological membranes, pulsed electrophoresis, chromotography, drug delivery, and other swelling systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achanta, S., Cushman, J. H. and Okos, M. R.: 1994, On multicomponent, multiphase thermomech anics with interfaces. Int. J. Engng Sci. 32(11), 1717–1738.

    Google Scholar 

  • Benach, R. and Müller, I.: 1973, Thermodynamics and the description of magnetizable dielectric mixtures of fluids, Arch. Ration. Mech. Anal. 53(4), 312–346.

    Google Scholar 

  • Bennethum, L. S. and Cushman, J. H.: 1996a, Multiscale, hybrid mixture theory for swelling systems. I: Balance laws, Int. J. Engng Sci. 34(2), 125–145.

    Google Scholar 

  • Bennethum, L. S. and Cushman, J. H.: 1996b, Multiscale, hybrid mixture theory for swelling systems. II: Constitutive theory, Int. J. Engng Sci. 34(2), 147–169.

    Google Scholar 

  • Bennethum, L. S. and Cushman, J. H.: 2002, Multicomponent, multiphase thermodynamics of swelling porous media with electroquasistatics. I. Macroscale field equations, Transport in Porous Media 47(3), 309–336.

    Google Scholar 

  • Bennethum, L. S. and Giorgi, T.: 1997, Generalized forchheimer law for two-phase flow based on hybrid mixture theory, Transport in Porous Media 26(3), 261–275.

    Google Scholar 

  • Bennethum, L. S., Murad, M. A. and Cushman, J. H.: 1996, Clarifying mixture theory and the macroscale chemical potential for porous media, Int. J. Engng Sci. 34(14), 1611–1621.

    Google Scholar 

  • Bennethum, L. S., Murad, M. A. and Cushman, J. H.: 1997, Modified Darcy's law, Terzaghi's effective stress principle and Fick's law for swelling clay soils, Comp. Geotech. 20(3/4), 245–266.

    Google Scholar 

  • Bennethum, L. S., Murad, M. A. and Cushman, J. H.: 2000, Macroscale thermodynamics and the chemical potential for swelling porous media, Transport in Porous Media 39(2), 187–225.

    Google Scholar 

  • Bensoussan, A., Lions, J. L. and Papanicolau, G.: 1978, Asymptotic Analysis of Periodic Structures, North-Holland, Amsterdam.

    Google Scholar 

  • Bowen, R. M.: 1976, Theory of mixtures, in: A. C. Eringen, (ed.), Continuum Physics, Academic Press, New York.

    Google Scholar 

  • Bowen, R. M.: 1982, Compressible porous media models by use of the theory of mixtures, Int. J. Engng Sci. 20, 697–735.

    Google Scholar 

  • Callen, H. B.: 1985, Thermodynamics and An Introduction to Thermostatistics, Wiley, New York.

    Google Scholar 

  • Coleman, B. D. and Noll, W.: 1963, The thermodynamics of elastic materials with heat conduction and viscosity, Arch. Ration. Mech. Anal. 13, 167–178.

    Google Scholar 

  • Cushman, J. H.: 1990, Molecular-scale lubrication, Nature 347(6290), 227–228.

    Google Scholar 

  • Douglas, J., Jr. and Arbogast, T.: 1990, Dual porosity models for flow in naturally fractured reservoirs, in: J. H. Cushman (ed.), Dynamics of Fluid in Hierarchical Porous Media, Academic Press, New York, pp. 177–222.

    Google Scholar 

  • Eringen, A. C.: 1967, Mechanics of Continua, Wiley, New York.

    Google Scholar 

  • Eringen, A. C.: 1998, A mixture theory of electromagnetism and superconductivity, Int. J. Engng Sci. 36(5,6), 525–543.

    Google Scholar 

  • Gray, W. G. and Hassanizadeh, S. M.: 1991, Unsaturated flow theory including interfacial phenomena, Water Resour. Res. 27, 1855–1863.

    Google Scholar 

  • Gu, W. Y., Lai, W. M. and Mow, V. C.: 1999, Transport of multi-electrolytes in charged hydrated biological soft tissues, Transport in Porous Media 34, 143–157.

    Google Scholar 

  • Hassanizadeh, S. M. and Gray, W. G.: 1979, General conservation equations for multiphase systems. 2. Mass, momenta, energy, and entropy equations, Adv. Water Resour. 2, 191–208.

    Google Scholar 

  • Hassanizadeh, S. M. and Gray, W. G.: 1980, General conservation equations for multiphase systems. 3. Constitutive theory for porous media, Adv. Water Resour. 3, 25–40.

    Google Scholar 

  • Hill, T. L.: 1968, Thermodynamics for Chemists and Biologists, Addison-Wesley, London.

    Google Scholar 

  • Huyghe, J. M. and Janssen, J. D.: 1999, Thermo-chemo-electro-mechanical formulation of saturated charged porous solids, Transport in Porous Media 34, 129–141.

    Google Scholar 

  • Jou, D., Casas-Vázquez, J. and Lebon, G.: 1996, Extended Irreversible Thermodynamics,Springer-Verlag, New York.

    Google Scholar 

  • Liu, I-S.: 1972, Method of lagrange multipliers for exploitation of the entropy principle, Arch. Ration. Mech. Anal. 46, 131–148.

    Google Scholar 

  • Müller, I. and Ruggeri, T.: 1993, Extended Thermodynamics, Springer-Verlag, New York.

    Google Scholar 

  • Murad, M. A., Bennethum, L. S. and Cushman, J. H.: 1995, A multi-scale theory of swelling porous media. I. Application to one-dimensional consolidation, Transport in Porous Media, 19, 93–122.

    Google Scholar 

  • Murad, M. A. and Cushman, J. H.: 1996, Multiscale flow and deformation in hydrophilic swelling porous media, Int. J. Engng Sci. 34(3), 313–336.

    Google Scholar 

  • Plumb, O. A. and Whitaker, S.: 1990, Diffusion, adsorption and dispersion in porous media. small-scale averaging and local volume averaging, in: J. H. Cushman (ed.), Dynamics of Fluid in Hierarchical Porous Media, Academic Press, New York, pp. 97–176.

    Google Scholar 

  • del Rio, J. A. and Whitaker, S.: 2000a, Maxwell's equations in two-phase systems I: Local electrodynamic equilibrium, Transport in Porous Media 39, 159–186.

    Google Scholar 

  • del Rio, J. A. and Whitaker, S.: 2000b, Maxwell's equations in two-phase systems II: Two-equation model, Transport in Porous Media 39, 259–287.

    Google Scholar 

  • Sanchez-Palencia, E.: 1980, Non-homegeneous media and vibration theory, in: Lecture Notes in Physics, Springer-Verlag, New York.

    Google Scholar 

  • Sasidhar, V. and Ruckestein, E.: 1981, Electrolyte osmosis through capillaries, J. Coll. Int. Sci. 82(2),439–457.

    Google Scholar 

  • Truesdell, C. and Noll, W.: 1965, The Non-Linear Field Theories of Mechanics, Handbuch der Physik III/3, Springer-Verlag.

  • Whitaker, S.: 1967, Diffusion and dispersion in porous media, AIChEJ 13, 420–438.

    Google Scholar 

  • Whitaker, S.: 1969, Advances in theory of fluid motion in porous media, Indust. Engng Chem. 61(12),14–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Schreyer Bennethum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bennethum, L.S., Cushman, J.H. Multicomponent, Multiphase Thermodynamics of Swelling Porous Media with Electroquasistatics: II. Constitutive Theory. Transport in Porous Media 47, 337–362 (2002). https://doi.org/10.1023/A:1015562614386

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015562614386

Navigation