Skip to main content
Log in

Kinetics of Protein Aggregation. Quantitative Estimation of the Chaperone-Like Activity in Test-Systems Based on Suppression of Protein Aggregation

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The experimental data on the kinetics of irreversible aggregation of proteins caused by exposure to elevated temperatures or the action of denaturing agents (guanidine hydrochloride, urea) have been analyzed. It was shown that the terminal phase of aggregation followed, as a rule, first order kinetics. For the kinetic curves registered by an increase in the apparent absorbance (A) in time (t) the methods of estimation of the corresponding kinetic parameters A lim and k I (A lim is the limiting value of A at t → ∞ and k I is the rate constant of the first order) have been proposed. Cases are revealed when the reaction rate constant k I calculated from the kinetic curve of aggregation of the enzymes coincides with the rate constant for enzyme inactivation. Such a situation is interpreted as a case when the rate of aggregation is limited by the stage of denaturation of the enzyme. A conclusion has been made that, in order to establish the mechanism of protein aggregation, the kinetic investigations of aggregation should be carried out over a wide range of protein concentrations. The refolding experiments after denaturation of proteins by guanidine hydrochloride or urea have been also analyzed. It was shown that aggregation accompanying refolding follows first order kinetics at the final phase of the process. The model of protein refolding explaining such a kinetic regularity has been proposed. When aggregation of protein substrate follows first order kinetics, parameters A lim and k I may be used for the quantitative characterization of the chaperone-like activity in the test-systems based on suppression of protein aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Morimoto, R. I., Tissieres, A., and Georgopoulos, C. (eds.) (1994) Progress and Perspectives on the Biology of Heat Shock Proteins and Molecular Chaperones, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  2. Ellis, R. J. (1996) Folding Des., 1, R9-R15.

    Google Scholar 

  3. Ellis, R. J., and Hartl, F. U. (1996) FASEB J., 10, 20-26.

    Google Scholar 

  4. Hartl, F. U. (1996) Nature, 381, 571-579.

    Google Scholar 

  5. Martin, J., and Hartl, F. U. (1997) Curr. Opin. Struct. Biol., 7, 41-52.

    Google Scholar 

  6. Ruddon, R. W., and Bedows, E. (1997) J. Biol. Chem., 272, 3125-3128.

    Google Scholar 

  7. Fink, A. L., and Goto, Y. (eds.) (1998) Molecular Chaperones in the Life Cycle of Proteins, Marcel Dekker, Inc., New York.

    Google Scholar 

  8. Fink, A. L. (1999) Physiol. Rev., 79, 425-449.

    Google Scholar 

  9. Csermely, P. (2001) News Physiol. Sci., 16, 123-126.

    Google Scholar 

  10. Lund, P. A. (2001) Adv. Microb. Physiol., 44, 93-140.

    Google Scholar 

  11. Frydman, J. (2001) Annu. Rev. Biochem., 70, 603-647.

    Google Scholar 

  12. Thirumalai, D., and Lorimer, G. H. (2001) Annu. Rev. Biophys. Biomol. Struct., 30, 245-269.

    Google Scholar 

  13. Muller, M., Koch, H. G., Beck, K., and Schafer, U. (2001) Progr. Nucleic Acid Res. Mol. Biol., 66, 107-157.

    Google Scholar 

  14. Hardesty, B., and Kramer, G. (2001) Progr. Nucleic Acid Res. Mol. Biol., 66, 41-66.

    Google Scholar 

  15. Bukau, B., Deuerling, E., Pfund, C., and Craig, E. A. (2000) Cell, 101, 119-122.

    Google Scholar 

  16. Saibil, H. (2000) Curr. Opin. Struct. Biol., 10, 251-258.

    Google Scholar 

  17. Agashe, V. R., and Hartl, F. U. (2000) Semin. Cell Dev. Biol., 11, 15-25.

    Google Scholar 

  18. Ellis, R. J. (2000) Trends Biochem. Sci., 25, 210-212.

    Google Scholar 

  19. Jakob, U., and Buchner, J. (1994) Trends Biochem. Sci., 19, 205-211.

    Google Scholar 

  20. Sax, C. M., and Piatigorsky, J. (1994) Adv. Enzymol. Related Areas Mol. Biol., 69, 155-201.

    Google Scholar 

  21. Buchner, J. (1996) FASEB J., 10, 10-19.

    Google Scholar 

  22. Ehrnsperger, M., Buchner, J., and Gaestel, M. (1998) in Molecular Chaperones in the Life Cycle of Proteins (Fink, A. L., and Goto, Y., eds.) Marcel Dekker, Inc., New York, pp. 533-575.

    Google Scholar 

  23. Forreiter, C., and Nover, L. (1998) J. Biosci., 23, 287-320.

    Google Scholar 

  24. Macario, A. J., and Conway de Macario, E. (2001) Front Biosci., 6, D262-D283.

    Google Scholar 

  25. Arsene, F., Tomoyasu, T., and Bukau, B. (2000) Int. J. Food Microbiol., 55, 3-9.

    Google Scholar 

  26. Skowyra, D., Georgopoulos, C., and Zylicz, M. (1990) Cell, 62, 939-944.

    Google Scholar 

  27. Hwang, D. S., Crooke, E., and Kornberg, A. (1990) J. Biol. Chem., 265, 19244-19248.

    Google Scholar 

  28. Ziemienowicz, A., Skowyra, D., Zeilstra-Ryalls, J., Fayet, O., Georgopoulos, C., and Zylicz, M. (1993) J. Biol. Chem., 268, 25425-25431.

    Google Scholar 

  29. Johnson, J. L., and Craig, E. A. (1997) Cell, 90, 201-204.

    Google Scholar 

  30. Freeman, B. C., and Morimoto, R. I. (1996) EMBO J., 15, 2969-2979.

    Google Scholar 

  31. Freeman, B. C., Toft, D. O., and Morimoto, R. I. (1996) Science, 274, 1718-1720.

    Google Scholar 

  32. MacRae, T. H. (2000) Cell Mol. Life Sci., 57, 899-913.

    Google Scholar 

  33. Finke, J. M., Roy, M., Zimm, B. H., and Jennings, P. (2000) Biochemistry, 39, 575-583.

    Google Scholar 

  34. Klinov, S. V., Chebotareva, N. A., Lissovskaya, N. P., Davidov, D. R., and Kurganov, B. I. (1982) Biochim. Biophys. Acta, 709, 91-98.

    Google Scholar 

  35. Sugrobova, N. P., Lissovskaya, N. P., and Kurganov, B. I. (1982) Biokhimiya, 47, 1883-1888.

    Google Scholar 

  36. Sugrobova, N. P., Lissovskaya, N. P., and Kurganov, B. I. (1983) J. Biochem. Biophys. Meth., 8, 299-306.

    Google Scholar 

  37. Joly, M. (1965) Physico-Chemical Approach to the Denaturation of Proteins, Academic Press, New York.

    Google Scholar 

  38. De Young, L. R., Fink, A. L., and Dill, K. A. (1993) Accounts Chem. Res., 26, 614-620.

    Google Scholar 

  39. Jaenicke, R. (1967) J. Polym. Sci., 16, 2143-2160.

    Google Scholar 

  40. Mitraki, A., and King, J. (1989) Bio/Technology, 7, 690-697.

    Google Scholar 

  41. Fields, G. B., Alonso, D. O. V., Stigter, D., and Dill, K. A. (1992) J. Phys. Chem., 96, 3974-3981.

    Google Scholar 

  42. Jaenicke, R. (1993) Chemtracts: Biochem. Mol. Biol., 4, 1-30.

    Google Scholar 

  43. Roy, S. K., Hiyama, T., and Nakamoto, H. (1999) Eur. J. Biochem., 262, 406-416.

    Google Scholar 

  44. De Young, L. R., Dill, K. A., and Fink, A. L. (1993) Biochemistry, 32, 3877-3886.

    Google Scholar 

  45. Eronina, T. B., Chebotareva, N. A., Livanova, N. B., and Kurganov, B. I. (2001) Biochemistry (Moscow), 66, 449-455.

    Google Scholar 

  46. Hook, D. W. A., and Harding, J. J. (1997) Eur. J. Biochem., 247, 380-385.

    Google Scholar 

  47. Chang, Z., Primm, T. P., Jakana, J., Lee, I. H., Serysheva, I., Chiu, W., Gilbert, H. F., and Guiocho, F. A. (1996) J. Biol. Chem., 271, 7218-7223.

    Google Scholar 

  48. Smulders, H. P. H., Merck, K. B., Aendekerk, J., Horwitz, J., Takemoto, L., Slingsby, C., Bloemendal, H., and de Jong, W. W. (1995) Eur. J. Biochem., 232, 834-838.

    Google Scholar 

  49. Stigter, D., and Dill, K. A. (1993) Fluid Phase Equilibria, 82, 237-249.

    Google Scholar 

  50. Horowitz, P., and Criscimagna, N. L. (1986) J. Biol. Chem., 261, 15652-15658.

    Google Scholar 

  51. Brems, D. N. (1968) Biochemistry, 27, 4541-4546.

    Google Scholar 

  52. Webb, T., Jackson, P. J., and Morris, G. E. (1997) Biochem. J., 321, 83-88.

    Google Scholar 

  53. Kuznetsova, I. M., Biktashev, A. G., Khaitlina, S. Y., Vassilenko, K. S., Turoverov, K. K., and Uversky, V. N. (1999) Biophys. J., 77, 2788-2800.

    Google Scholar 

  54. Lin, Z., Wang, C.-C., and Tsou, C.-L. (2000) Biochim. Biophys. Acta, 1481, 283-288.

    Google Scholar 

  55. Bär, J., Golbik, R., Hübner, G., and Kopperschläger, G. (2000) Biochemistry, 39, 6960-6968.

    Google Scholar 

  56. London, J., Skrzynia, C., and Goldberg, M. E. (1974) Eur. J. Biochem., 47, 409-415.

    Google Scholar 

  57. Martineau, P., and Betton, J.-M. (1999) J. Mol. Biol., 292, 921-929.

    Google Scholar 

  58. Park, Y.-D., Wu, B.-N., Tian, W.-X., and Zhou, H.-M. (2002) Biochemistry (Moscow), 67, No. 8.

  59. Kendrick, B. S., Carpenter, J. F., Cleland, J. L., and Randolph, T. W. (1998) Proc. Natl. Acad. Sci. USA, 95, 14142-14146.

    Google Scholar 

  60. Zettlmeissl, G., Rudolph, R., and Jaenicke, R. (1979) Biochemistry, 18, 5567-5571.

    Google Scholar 

  61. Goldberg, M. E., Rudolph, R., and Jaenicke, R. (1991) Biochemistry, 30, 2790-2897.

    Google Scholar 

  62. Jaenicke, R. (1997) in Current Topics in Cellular Regulation (Stadtman, E. R., and Chock, P. B., eds.) Vol. 34, Academic Press, New York, pp. 209-314.

    Google Scholar 

  63. Jaenicke, R., and Seckler, R. (1997) Adv. Protein Chem., 50, 1-59.

    Google Scholar 

  64. Jaenicke, R. (1998) in Stability and Stabilization of Biocatalysts (Ballesteros, A., Plou, F. J., Iborra, J. L., and Halling, P. J., eds.) Elsevier, Amsterdam, pp. 165-182.

    Google Scholar 

  65. Jaenicke, R. (1998) in Molecular Chaperones in the Life Cycle of Proteins (Fink, A. L., and Goto, Y., eds.) Marcel Dekker, Inc., New York, pp. 35-70.

    Google Scholar 

  66. Arié, J.-P., Sassoon, N., and Betton, J.-M. (2001) Mol. Microbiol., 39, 199-210.

    Google Scholar 

  67. Li, S., Bai, J.-H., Park, Y.-D., and Zhou, H.-M. (2001) Int. J. Biochem. Cell Biol., 33, 279-286.

    Google Scholar 

  68. Roher, N., Miré, F., Boldyreff, B., Llorens, F., Plana, M., Issinger, O.-G., and Itarte, E. (2001) Eur. J. Biochem., 268, 429-436.

    Google Scholar 

  69. Kurganov, B. I., Dobrov, E. N., Rafikova, E. R., Fedurkina, N. V., Mitskevich, L. G., Belousova, L. V., and Zhou, H.-M. (2001) 1st Tsinghua Int. Conf. of Protein Sciences (May 21-23, 2001, Beijing, China), Abstracts, Tsinghua University, Beijing, p. 36.

    Google Scholar 

  70. Kiefhaber, T., Rudolph, R., Kohler, H.-H., and Buchner, J. (1991) Bio/Technology, 9, 825-829.

    Google Scholar 

  71. Jaenicke, R. (1991) Biochemistry, 30, 3147-3161.

    Google Scholar 

  72. Jaenicke, R. (1995) Phil. Trans. R. Soc. (London) B, 348, 97-105.

    Google Scholar 

  73. Jaenicke, R. (1998) Biol. Chem., 379, 237-243.

    Google Scholar 

  74. Jaenicke, R. (1999) Progr. Biophys. Mol. Biol., 71, 155-241.

    Google Scholar 

  75. Kurganov, B. I., and Surgobova, N. P. (1967) Biofizika, 12, 193-199.

    Google Scholar 

  76. Cleland, J. L. (1993) in Protein Folding in vivo and in vitro (Cleland, J. L., ed.) ACS Symp. Ser. 526, American Chemical Society, Washington, pp. 1-21.

    Google Scholar 

  77. Wetzel, R. (1994) Trends Biotechnol., 12, 193-198.

    Google Scholar 

  78. Speed, M. A., Wang, D. I., and King, J. (1995) Prot. Sci., 4, 900-908.

    Google Scholar 

  79. King, J., Haase-Pettingell, C., Robinson, A. S., Speed, M., and Mitraki, A. (1996) FASEB J., 10, 57-66.

    Google Scholar 

  80. Wetzel, R. (1996) Cell, 86, 699-702.

    Google Scholar 

  81. Fink, A. L. (1998) Folding Des., 3, R9-R23.

    Google Scholar 

  82. Kurganov, B. I., and Topchieva, I. N. (1998) Biochemistry (Moscow), 63, 413-419.

    Google Scholar 

  83. Finke, J. M., Gross, L. A., Ho, H. M., Sept, D., Zimm, B. H., and Jennings, P. A. (2000) Biochemistry, 39, 15633-15642.

    Google Scholar 

  84. Betton, J.-M., Sassoon, N., Hofnung, M., and Laurent, M. (1998) J. Biol. Chem., 273, 8897-8902.

    Google Scholar 

  85. De Bernardez-Clark, E., and Georgiou, G. (1991) in Protein Refolding (Georgiu, G., and de Bernardez-Clark, E., eds.) American Chemical Society, Washington, pp. 1-20.

    Google Scholar 

  86. Chan, W., Helms, L. R., Brooks, I., Lee, G., Ngola, S., McNulty, D., Maleef, B., Hensley, P., and Wetzel, R. (1996) Folding Des., 1, 77-89.

    Google Scholar 

  87. Chrunyk, B. A., Evans, J., Lillquist, J., Young, P., and Wetzel, D. (1993) J. Biol. Chem., 268, 18053-18061.

    Google Scholar 

  88. Haase-Pettingell, C. A., and King, J. (1988) J. Biol. Chem., 263, 4977-4983.

    Google Scholar 

  89. Hoffmann, F., Posten, C., and Rinas, U. (2001) Biotechnol. Bioeng., 72, 315-322.

    Google Scholar 

  90. Esler, W. P., Stimson, E. R., Ghilardi, J. R., Vinters, H. V., Lee, J. P., Mantyh, P. W., and Maggio, J. E. (1996) Biochemistry, 35, 749-757.

    Google Scholar 

  91. Jarrett, J. T., and Lansbury, P. T. (1993) Cell, 73, 1055-1058.

    Google Scholar 

  92. Lomakin, A., Chung, D. S., Benedek, G. B., Kirschner, D. A., and Teplow, D. B. (1996) Proc. Natl. Acad. Sci. USA, 93, 1125-1129.

    Google Scholar 

  93. Lomakin, A., Teplow, D. B., Kirschner, D. A., and Benedek, G. B. (1997) Proc. Natl. Acad. Sci. USA, 94, 7942-7947.

    Google Scholar 

  94. Naiki, H., Hasegawa, K., Yamaguchi, I., Nakamura, H., Gejyo, F., and Nakakuki, K. (1998) Biochemistry, 37, 17882-17889.

    Google Scholar 

  95. Naiki, H., and Gejyo, F. (1999) Meth. Enzymol., 309, 305-319.

    Google Scholar 

  96. Inouye, H., and Kirschner, D. A. (2000) J. Struct. Biol., 130, 123-129.

    Google Scholar 

  97. Oosawa, F., and Kasai, M. (1962) J. Mol. Biol., 4, 10-21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurganov, B.I. Kinetics of Protein Aggregation. Quantitative Estimation of the Chaperone-Like Activity in Test-Systems Based on Suppression of Protein Aggregation. Biochemistry (Moscow) 67, 409–422 (2002). https://doi.org/10.1023/A:1015277805345

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015277805345

Navigation