Skip to main content
Log in

A review of non-DLVO interactions in environmental colloidal systems

  • Published:
Reviews in Environmental Science and Biotechnology Aims and scope Submit manuscript

Abstract

The interaction and behavior of surfaces orcolloids is of quantitative significance inunderstanding the transport and fate ofcompounds and microorganisms in environmentalsystems. Historically, the DLVO model ofcolloid stability has described theseinteractions. This model finds its basis in aforce (energy) balance that comprisesattractive van der Waals and repulsiveelectrostatic interactions. Recently, the DLVOmodel has been found unable to fully describebiotic and abiotic colloidal behavior inaqueous media. The suspending phase (commonlywater) is often treated as a force (energy)transmitting or propagating medium. It isreasonable to believe that the structure ofwater may participate in a more significantfashion. Moreover, other moieties (sorbed anddissolved) may also have non-DLVO effects. Significant work has been focused on extendingthe precepts of the traditional DLVO model toaccommodate these non-DLVO forces (energies). This paper reviews many of the interactionsthat play a role in environmental systems andare not commonly subsumed by the traditionalDLVO model: e.g., hydrogen bonding and thehydrophobic effect, hydration pressure,non-charge transfer Lewis acid baseinteractions, and steric interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adamson AW & Gast AP (1997) Physical Chemistry of Surfaces. Wiley, New York

    Google Scholar 

  • Amirtharajah A & O'Melia CR (1990) Coagulation processes: destabilization, mixing and flocculation. In: Pontius FW (Ed.) Water Quality and Treatment. AWWA (pp 269), McGraw-Hill, Inc., USA

    Google Scholar 

  • Baygents JC & Saville DA (1991) Electrophoresis of drops and bubbles. J. Chem. Soc. Faraday Trans. 87: 1883-1897

    Google Scholar 

  • Belaya ML, Feigel'man MV & Levadny VG (1987) Structural forces as a result of non-local water polarizability. Langmuir 3: 648-654

    Google Scholar 

  • Bhattacharjee S, Ko CH & Elimelech M. (1998) DLVO interactions between rough surfaces. Langmuir 14: 3365-3375

    Google Scholar 

  • Biggs S (1995) Steric and bridging Forces between surfaces bearing adsorbed polymer: An atomic force microscope study. Langmuir 11: 156-162

    Google Scholar 

  • Biggs S & Healy TW (1994) Electrosteric stabilization of colloidal zirconia with low-molecular weight polyacrylic acid. J. Chem. Faraday Trans. 90: 3415-3421

    Google Scholar 

  • Boisvert JP, To TC, Berrak A & Jolicoeur C (1997) Phosphate adsorption in flocculation processes of aluminum sulfate and poly-aluminum-silicate-sulfate. Wat. Res. 31: 1939-1946

    Google Scholar 

  • Bowen WR & Jenner F (1995) The calculation of dispersion forces for engineering applications. Adv. Colloid and Interface Sci. 56: 201-243

    Google Scholar 

  • Bowen WR & Williams PM (1996) The osmotic pressure of electrostatically stabilized colloidal dispersions. J. Colloid Interface Sci. 184: 241-250

    Google Scholar 

  • Braithwaite CJC, Howe A & Luckham PF (1996) Interactions between poly(ethylene oxide) layers adsorbed to glass surfaces probed by using a modified atomic force microscope. Langmuir 12: 4224-4237

    Google Scholar 

  • Breeuwsma A & Lyklema J (1973) Physical and chemical adsorption of ions in the electrical double layer on hematite (α-Fe2O3). J. Colloid and Interface Sci. 43: 437-448

    Google Scholar 

  • Bunkin NF, Kiseleva OA, Lobeyev AV, Movchan TG, Ninham BW & Vinogradova OI (1997) Effect of salts and dissolved gas on optical cavitation near hydrophobic and hydrophilic surfaces. Langmuir 13: 3024-3028

    Google Scholar 

  • Butkus MA & Grasso D (1998) Impact of aqueous electrolytes on interfacial energy. J. Colloid Interface Sci. 200: 172-181

    Google Scholar 

  • Butkus MA & Grasso D (1999) Impact of phosphate sorption on water-treatment residual surface characteristics: Prelude to reuse. Env. Eng. Sci. 16: 117-129

    Google Scholar 

  • Butkus MA & Grasso D (2001) The nature of surface complexation: A continuum approach. Env. Geol. 40: 446-453

    Google Scholar 

  • Butt H (1991) Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J. 60: 1438-1444

    Google Scholar 

  • Cevc G (1991) Hydration force and the interfacial structure of the polar surface. J. Chem. Soc. Faraday Trans. 87: 2733-2738

    Google Scholar 

  • Chaudhury MK & Good RJ (1987) A quantitative theory of negative adsorption of nonelectrolytes caused by repulsive van der Waals forces. Langmuir 1: 673-678

    Google Scholar 

  • Chaudhury MK (1984) Short-Range and Long-Range Forces in Colloidal and Macroscopic Systems. Ph.D. Dissertation (pp 250), State University New York, Buffalo, DA84260027

    Google Scholar 

  • Chheda P & Grasso D (1994) Surface thermodynamics of ozone-induced particle destabilization. Langmuir 10: 1044-1053

    Google Scholar 

  • Chou T (2001) Geometry dependent electrostatics near contact lines. Physical Review Letters, 8710(10): 6101

    Google Scholar 

  • Churaev NV & Derjaguin BVJ (1985) Inclusion of structural forces in the theory of stability of colloids and film. Colloid Interface Sci. 103: 542-553

    Google Scholar 

  • Colic M, Franks GV, Fisher ML & Lange FF (1997) Effect of counterion size on short range repulsive forces at high ionic strengths. Langmuir 13: 3129-3135

    Google Scholar 

  • Craig VSJ, Ninham BW & Pashley RM (1993) The effect of electrolytes on bubble coalescence in water. J. Phys. Chem. 97: 10192-10197

    Google Scholar 

  • Craig VSJ, Ninham BW & Pashley RM (1998) Study of the long-range hydrophobic attraction in concentrated salt solutions and its implications for electrostatic models. Langmuir 14: 3326-3332

    Google Scholar 

  • Davies B & Ninham BW (1972) van der Waals forces in electrolytes. J. Chem Phys. 56: 5797-5801

    Google Scholar 

  • Davis JA & Kent DB (1990) Surface complexation modeling in aqueous geochemistry. In: Hochella MF & White AF (Eds) Reviews in Mineralogy, vol. 23 (pp 177-248). Mineralogical Society of America, Washington, DC

    Google Scholar 

  • De Gennes P (1982) Polymers at an interface. 2. Interaction between two plates carrying adsorbed polymer layers. Macromolecules 15: 492-500

    Google Scholar 

  • De Gennes P (1987) Polymers at an interface: A simplified view. Adv. Colloid Interface Sci. 27: 189-209

    Google Scholar 

  • Derjaguin BV & Churaev NV (1987) Structure of water in thin layers. Langmuir 3: 607-612

    Google Scholar 

  • Derjaguin BV & Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. U.S.S.R. 14: 633

    Google Scholar 

  • Drost-Hansen W (1965) Aqueous methods of study and structural properties. Ind. Eng. Chem. 57: 18-37

    Google Scholar 

  • Du Q, Freysz E & Shen YR (1994) Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science 264: 826-828

    Google Scholar 

  • Dzombak DA & Morel FMM (1990) Surface Complexation Modeling: Hydrous Ferric Oxide. John Wiley & Sons, New York

    Google Scholar 

  • Elimelech M & O'Melia CR (1990a) Effect of electrolyte type on the electrophoretic mobility of polystyrene latex colloids. Colloids Surf. A. 44: 165-178

    Google Scholar 

  • Elimelech M & O'Melia CR (1990b) Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers. Langmuir 6: 1153-1163

    Google Scholar 

  • Elimelech M, Gregory J, Jia X & Williams RA (1995) Particle Deposition and Aggregation: Measurement, Modeling and Simulation. Butterworth-Heinemann, Woburn, MA

    Google Scholar 

  • Everett DH (1986) How much do we really know about water. In: Neilson GW & Enderby JE (Eds) Water and Aqueous Solutions. Adam Hilger, Bristol

    Google Scholar 

  • Fleer GJ, Cohen Stuart MA, Scheutjens JMHM, Cosgrove T & Vincent B (1993) Polymers at Interfaces. Chapman & Hall, London.

    Google Scholar 

  • Flory PJ & Krigbaum WR (1950) Statistical mechanics of dilute polymer solutions: II. J. Chem. Phys. 18: 1086

    Google Scholar 

  • Forslind E & Jacobsson A (1975) Clay-water systems. In: Franks F (Ed) Water, A Comprehensive Treatise, Vol 5, Water in Disperse Systems. Plenum Press, New York

    Google Scholar 

  • Forsman J, Eoodward CE & Jonsson B (1997) The origins of hydration forces: Monte Carlo simulation and density functional theory. Langmuir 13: 5459-5464

    Google Scholar 

  • Fowkes F (1964) Attractive forces at interfaces. Ind. Eng. Chem. 56: 40-52

    Google Scholar 

  • Franks GV, Johnson SB, Scales PJ, Boger DV & Healy TW (1999) Ion-specific strength of attractive particle networks. Langmuir 15: 4411-4420

    Google Scholar 

  • Freitas AM & Sharma MM (2001) Detachment of particles from surfaces: An AFM study. J. Colloid Interface Sci. 233: 73-82

    Google Scholar 

  • Giasson S, Kuhl TL & Israelachvili JN (1998) Adsorption and interaction forces of micellar and microemulsion solutions in ultrathin films. Langmuir 14: 891-898

    Google Scholar 

  • Grasso D, Carrington JC, Chheda P & Kim B (1995) Nitrocellulose particle stability: Coagulation thermodynamics. Wat. Res. 29: 49-59

    Google Scholar 

  • Gregory J (1975) Interaction of unequal double layers at constant charge. J. Colloid Interface Sci. 51: 44-51

    Google Scholar 

  • Gruen DWR & Marcelja S (1983) Spatially varying polarization in water. J. Chem. Soc. Faraday Trans 2. 79: 225-242

    Google Scholar 

  • Gutowski W (1991) Thermodynamics of Adhesion. In: Lieng-Huang Lee (Ed) Fundamentals of Adhesion. Plenum Press, New York

    Google Scholar 

  • Hamaker HC (1937) London-van der Waals attraction between spherical particles. Physica 4: 1058-1072

    Google Scholar 

  • Hård S & Johansson K (1977) The surface tension of concentrated aqueous solutions of 1:1-electrolytes measured by means of Wilhelmy and laser light scattering methods. J. Colloid Interface Sci. 60: 467-472

    Google Scholar 

  • Harrison JB & Berkheiser VE (1982) Anion interactions with freshly prepared hydrous iron oxides. Clays Clay Min. 30: 97-101

    Google Scholar 

  • Heller W & Pugh TL (1954) Steric protection of hydrophobic colloidal particles by adsorption of flexible macromolecules. J. Chem. Phys. 22: 1778

    Google Scholar 

  • Hesselink FTh (1971) On the theory of the stabilization of dispersions by adsorbed macromolecules. I. Statistics of the change of some configurational properties of adsorbed macromolecules on the approach of an impenetrable surface. J. Phys. Chem. 75: 65-71

    Google Scholar 

  • Hesselink FTh, Vrij A & Overbeek JThG (1971) On the theory of the stabilization of dispersions by adsorbed macromolecules. II. Interaction between two flat particles. J. Phys. Chem. 75: 2094-2103

    Google Scholar 

  • Heydweiller A (1910) Interdependence of the physical properties of solutions. II. Surface tension and electrical conductivity of aqueous salt-solutions. Ann. d. Physik 4(33): 145-185

    Google Scholar 

  • Hiemenz PC & Rajagopalan R (1997) Principles of Colloid and Surface Chemistry. 3rd edn. Marcel Dekker, New York

    Google Scholar 

  • Holmes-Farley SR, Reamey RH, McCarthy TJ, Deutch J & Whitesides GM (1985) Acid-base behavior of carboxylic acid groups covalently attached at the surface of polyethylene: The usefulness of contact angle in following the ionization of surface functionality. Langmuir 1: 725-740

    Google Scholar 

  • Horn RA (1972) Effect of structure and physical characteristics of water on water chemistry. In: Ciaccio LL (Ed) Water and Water Pollution Handbook (pp 915-947). Marcel Dekker, New York

    Google Scholar 

  • Horvath AL (1985) Handbook of Aqueous Electrolyte Solutions; Physical Properties, Estimation and Correlation Methods. Wiley, New York

    Google Scholar 

  • Hough DB & White LR (1980) The calculation of Hamaker constants from Lifshitz theory with applications to wetting phenomena. Adv. Colloid Interface Sci. 14: 3-41

    Google Scholar 

  • Hull M & Kitchnener JA (1969) Interaction of spherical colloidal particles with planar surfaces. Trans Faraday Soc. 65: 3093-3104

    Google Scholar 

  • Hunter RJ (1986) Foundations of Colloid Science, Volume I. Oxford University Press, Oxford

    Google Scholar 

  • Israelachvili JN & Wennerström H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379: 219-224

    Google Scholar 

  • Israelachvili JN (1992) Intermolecular and Surface Forces. Academic Press, New York

    Google Scholar 

  • Israelachvili JN & Adams GE (1978) Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0-100 nm. J. Chem. Soc. Faraday Trans. 1 74: 975-1001

    Google Scholar 

  • Israelachvili JN & Pashley RM (1984) DLVO and hydration forces between mica surfaces inMg+2, Ca+2, Sr+2, and Ba+2 chloride solutions. J. Colloid Interface Sci. 97: 446-455

    Google Scholar 

  • Israelachvili JN & McGuiggan PM (1988) Forces between surfaces in liquids. Science. 241: 795-800

    Google Scholar 

  • Jeffrey GA (1997) An Introduction to Hydrogen Bonding. Oxford University Press, New York

    Google Scholar 

  • Jeffrey GA & Saenger W (1991) Hydrogen Bonding in Biological Structures. Springer-Verlag, Berlin

    Google Scholar 

  • Johnston CT, Sposito G & Earl WL (1993) In: Buffle J and van Leeuwen (Eds) Environmental Particles (pp 1-36). Lewis Publishers, Boca Raton

    Google Scholar 

  • Jucker BA, Zehnder AJB & Harms H (1998) Quantification of polymer interactions in bacterial adhesion. Environ. Sci. Technol. 32: 2909-2915

    Google Scholar 

  • Kitano H, Ichikawa K, Ide M, Fukuda M & Mizuno W (2001) Fourier transform infrared study on the state of water sorbed to poly(ethylene glycol) films. Langmuir 17: 1889-1895

    Google Scholar 

  • Klein J (1980) Forces between mica surfaces bearing layers of adsorbed polystyrene in cyclohexane. Nature 288: 248-250

    Google Scholar 

  • Klein J (1983) Forces between mica surfaces bearing adsorbed macromolecules in liquid media. J. Chem. Soc. Faraday Trans. 79: 99-118

    Google Scholar 

  • Klein J & Luckham PF (1982) Forces between two adsorbed polyethylene oxide layers immersed in a good aqueous solvent. Nature 300: 429-431

    Google Scholar 

  • Klein J & Luckham PF (1984) Forces between two adsorbed poly(ethylene oxide) layers in a good aqueous solvent in the range of 0-150 nm. Macromolecules 17: 1041-1054

    Google Scholar 

  • Lasaga AC (1990) Atomic treatment of mineral-water surface reactions. In: Hochella MF & White AF (Eds) Mineral-Water Interface Geochemistry, Reviews in Mineralogy, vol. 23. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Le Neveu DM, Rand RP & Parsegian VA (1976) Measurement of forces between lecithin bilayers. Nature 259: 601-603

    Google Scholar 

  • Leberman R & Soper AK (1995) Effect of high salt concentrations on water structure. Nature 378: 364-366

    Google Scholar 

  • Liang L & Morgan JJ (1990) Chemical aspects of iron oxide coagulation in water: Laboratory studies and implications for natural systems. Aquatic Sci. 52: 32

    Google Scholar 

  • Lyklema J (1978) Surface chemistry of colloids in connection with stability. In: Ives KJ (Ed) The Scientific Basis of Flocculation. Sijhoff and Noordhoff, The Netherlands

    Google Scholar 

  • Mackor EL (1951) A theoretical approach of the colloid-chemical stability of dispersion in hydrocarbon. J. Colloid Interface Sci. 6: 492

    Google Scholar 

  • Mackor EL & van der Waals JH (1952) A statistics of the adsorption of rod-shaped molecules in connection with the stability of certain colloidal dispersions. J. Colloid Interface Sci. 7: 535

    Google Scholar 

  • Mahanty J & Ninham BW (1976) Dispersion Forces. Academic Press, New York

    Google Scholar 

  • Marcelja S & Radic N (1976) Repulsion of interfaces due to boundary water. Chem. Phys. Lett. 42: 129-130

    Google Scholar 

  • Marra J (1985) Direct measurements of attractive van der Waals and adhesion forces between uncharged lipid bilayers in aqueous solutions. J. Colloid Interface Sci. 109: 11-20

    Google Scholar 

  • Marrink S, Berkowitz M & Berendsen JC (1993) Molecular dynamics simulation of a membrane/water interface: The ordering of water and its relation to the hydration force. Langmuir 9: 3122-3131

    Google Scholar 

  • Maurice P (1996) Application of atomic-force microscopy in environmental colloid and surface chemistry Colloids Surf. A: Physicochem. Eng. Aspects. 107: 57-75

    Google Scholar 

  • Mishchuk NA, Sjoblom J & Dukhin SS (1995) Influence of retardation and screening of van der Waals attractive forces on reverse coagulation of emulsions in the secondary minimum. Colloid J. 57: 785-792

    Google Scholar 

  • Molia-Bolivar JA & Ortega-Vinuesa JL (1999) How proteins stabilize colloidal particles by means of hydration forces. Langmuir 15: 2644-2653

    Google Scholar 

  • Narten AH & Levy HA (1972) Liquid water: Scattering of X-rays. In: Franks F. (Ed) Water, A Comprehensive Treatise, Vol 1, The Physics and Physical Chemistry of Water. Plenum Press, New York

    Google Scholar 

  • Ninham BW (1999) On progress in forces since the DLVO theory. Adv. Colloid Interface Sci. 83: 1-17

    Google Scholar 

  • Ninham BW, Kurihara K & Vinogradova OI (1997) Hydrophobicity, specific ion adsorption and reactivity Colloids Surf. A: Physicochem. Eng. Aspects. 123-124: 7-12

    Google Scholar 

  • Ninham BW & Yaminsky V (1997) Ion binding and ion specificity: The Hofmeister effect and Onsanger and Lifshitz theories. Langmuir 13: 2097-2108

    Google Scholar 

  • Odiachi PC & Prieve DC (1999) Effect of added salt on the depletion attraction caused by non-adsorbing clay particles. Colloids Surf. A: Physicochem. Eng. Aspects. 146: 315-328

    Google Scholar 

  • Onsager L & Samaras NNT (1934) The surface tension of Debye-Hückle electrolytes. J. Chem. Phys. 2: 528-536

    Google Scholar 

  • Ohtaki H & Radnai T (1993) Structure and dynamics of hydrated ions. Chem. Rev. 3: 1157-1204

    Google Scholar 

  • Parks GA (1977) The isoelectric points of solid oxides, solid hydroxides and aqueous hydroxo complex systems. Chem. Rev. 65: 177-198

    Google Scholar 

  • Parks GA (1984) Surface and interfacial free energies of quartz. J. Geophys. Res. 89: 3997-4008

    Google Scholar 

  • Parks GA (1990) Surface energy and adsorption at mineral-water interfaces: An introduction. In: Hochella MF & White AF (Eds) Mineral-Water Interface Geochemistry, Reviews in Mineralogy, vol. 23. Mineralogical Scociety of America, Washington, DC

    Google Scholar 

  • Pashley RM (1981a) Hydration forces between mica surfaces in aqueous electrolyte solutions. J. Colloid Interface Sci. 80: 153-162

    Google Scholar 

  • Pashley RM (1981b) DLVO and hydration forces between mica surfaces in Li+, Na+, K+, and Cs+ electrolyte solutions: A correlation of double-layer and hydration forces with surface cation exchange properties. J. Colloid Interface Sci. 83: 531-546

    Google Scholar 

  • Pashley RM & Quirk JP (1984) The effect of cation valency on DLVO and hydration forces between macroscopic sheets of muscovite mica in relation to clay swelling. Colloids Surf. A 9: 1-17

    Google Scholar 

  • Pauling L (1960) The Nature of the Chemical Bond, 3rd edn. Cornell University Press, Ithaca, NY

    Google Scholar 

  • Pedersen HG & Bergstrom L (1999) Forces measured between Zirconia surfaces in poly(acrylic acid) solutions. J. Amer. Chem. Soc. 82: 1137-1145

    Google Scholar 

  • Rijnaarts HHM, Norde W, Lyklema J & Zehnder AJB (1999) DLVO and steric contributions to bacterial deposition in media of different ionic strengths. Colloids and Surfaces B: Biointerfaces 14: 179-195

    Google Scholar 

  • Sato T & Ruch R (1980) Stabilization of Colloidal Dispersions by Polymer Adsorption. Marcel Dekker, New York

    Google Scholar 

  • Schindler PW (1990) Co-Adsorption of metal ions and organic ligands: Formation of ternary surface complexes. In: Hochella MF & White AF (Eds) Mineral-Water Interface Geochemistry, Reviews in Mineralogy, vol. 23. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Schwarzenbach RP, Gschwend PM & Imboden DM (1993), Environmental Organic Chemistry. John Wiley & Sons, New York

    Google Scholar 

  • Song L & Elimelech M (1994) Transient deposition of colloidal particles in heterogeneous porous media. J. Colloid and Interface Sci. 167: 301-303

    Google Scholar 

  • Sposito G (1984) The Surface Chemistry of Soils. Oxford University Press, New York

    Google Scholar 

  • Sposito G (1990) Molecular models of ion adsorption on mineral surfaces. In: Hochella MF & White AF (Eds) Reviews in Mineralogy, vol. 23 (pp 261-279). Mineralogical Society of America, Washington DC

    Google Scholar 

  • Sposito G & Prost R (1982) Structure of water adsorbed on smectites. Chem. Rev. 82: 553-573

    Google Scholar 

  • Sposito G & Grasso D (1998) Electrical double layer structure, forces, and fields at the clay-water interface. In: Hsu JP (Ed) Interfacial Forces and Fields (pp 207-249). Marcel Dekker, New York

    Google Scholar 

  • Stairs RA (1995) Calculation of surface tension of salt solutions: Effective polarizability of solvated ions. Can. J. Chem. 73: 781-787

    Google Scholar 

  • Stenkamp VS, McGuiggan P & Berg JC (2001) Restabilization of electrosterically stabilized colloids in high salt media. Langmuir 17: 637-651

    Google Scholar 

  • Stumm W & Morgan JJ (1996) Aquatic Chemistry. Wiley, New York

    Google Scholar 

  • Subramaniam K, Yiacoumi S & Tsouris C (2001) Copper uptake by inorganic particles-Equilibrium, kinetics, and particle interactions: Experimental. Colloids Surf. A 177: 133-146

    Google Scholar 

  • van Oss CJ (1994) Interfacial Forces in Aqueous Media. Marcel Dekker, New York

    Google Scholar 

  • van Oss CJ (1991) Interaction forces between biological and other polar entities in water: How many different primary forces are there? Journal of Dispersion Science and Technology 12: 201-219

    Google Scholar 

  • van Oss CJ, Giese RF, Li Z, Murphy K, Norris J, Chaudhury MK & Good R (1992) Determination of contact angles and pore sizes of porous media by column and thin layer wicking. J. Adhesion Sci. Tech. 6: 413

    Google Scholar 

  • van Oss CJ, Gillman CF & Neumann A (1975) Phagocytosis as a Surface Phenomenon. Marcel Dekker, New York

    Google Scholar 

  • van Oss CJ, Chaudhury MK & Good RJ (1988) Interfacial Lifshitzvan der Waals and polar interactions in macroscopic systems. Chem. Rev. 88: 927-941

    Google Scholar 

  • van Oss CJ, Giese RF & Costanzo PM (1990) DLVO and non-DLVO interactions in hectorite. Clays Clay Miner. 38(2): 151-159

    Google Scholar 

  • van Oss CJ & Giese RF (1995) The hydrophilicity and hydrophobicity of clay minerals. Clays Clay Miner. 43: 474-477

    Google Scholar 

  • Veeramasuneni S, Hu Y, Yalamanchili MR & Miller JD (1997) Interaction forces at high ionic strengths: The role of polar interfacial interactions. J. Colloid Interface Sci. 188: 473-480

    Google Scholar 

  • Verwey EJW & Overbeek JThG (1948) Theory of the Stability of Lyophobic Colloids. Elsevier, Amsterdam

    Google Scholar 

  • Walker HW & Grant SB (1996) Role of polymer flexibility in the stabilization of colloidal particles by model anionic polyelectrolytes. J. Colloid Interface Sci. 179: 552-560

    Google Scholar 

  • Walz JY (1998) The effect of surface heterogeneities on colloidal forces. Adv. Colloid Interface Sci. 74: 119-168

    Google Scholar 

  • Weissenborn PK & Pugh RJ (1996) Surface Tension of Aqueous Solutions of Electrolytes: Relationship with Ion Hydration, Oxygen Solubility, and Bubble Coalescence. J. Colloid Interface Sci. 184: 550-563

    Google Scholar 

  • Wu W, Giese P & van Oss C (1995) Evaluation of the Lifshitzvan der Waals/Acid-Base approach to determine surface tension components. Langmuir 11: 379-382

    Google Scholar 

  • Wu W, Giese RF & van Oss CJ (1994) Linkage between zeta potential and electron donicity of charge polar surfaces: 1. Implications for the mechanism of flocculation of particle suspensions with plurivalent counterions. Colloids Surf. A 89: 241-252

    Google Scholar 

  • Yaminsky VV, Ninham BW, Christenson HK & Pashley RM (1996) Adsorption forces between hydrophobic monolayers. Langmuir 12: 1936-1943

    Google Scholar 

  • Yotsumoto H & Yoon RH (1993) Application of extended DLVO theory I. Stability of rutile suspensions. J. Colloid Interface Sci. 157: 426-433

    Google Scholar 

  • Zettlemoyer AC, Micale FJ & Klier K (1975) Adsorption of water on well-characterized solid surfaces. In: Franks F (Ed) Water, A Comprehensive Treatise, Vol 5, Water in Disperse Systems. Plenum Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Grasso*.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grasso*, D., Subramaniam, K., Butkus, M. et al. A review of non-DLVO interactions in environmental colloidal systems. Re/Views in Environmental Science and Bio/Technology 1, 17–38 (2002). https://doi.org/10.1023/A:1015146710500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015146710500

Navigation