Skip to main content
Log in

Alterations of INK4a p16—p14ARF /INK4b p15 Expression and Telomerase Activation in Meningioma Progression

Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Dysregulation of cell cycle progression and telomerase activation have been implicated in malignant tumor progression as well as in the evasion of senescence and immortalization. We have investigated expression of the cell cycle control and tumor suppressor genes INK4a p16–p14ARF, INK4b p15–p10 and RB, and their relation to telomerase activation during malignant meningioma progression. 7/26 (27%) benign, 3/12 (25%) atypical but 4/7 (57%) anaplastic tumors lacked both, p16 and p15 protein expression. 14/39 (36%) benign and atypical but 5/7 (71%) anaplastic meningiomas contained no p14ARF mRNA. 2/46 (4%) tumors failed to express pRB. We observed frequent differential loss of expression of the alternatively spliced INK4a tumor suppressors p16 and p14ARF. Exclusive expression of the alternative INK4b transcript p10 possibly at the expense of p15 and therefore resulting in loss of p15 tumor suppressor activity was noted in two meningiomas. We have previously described telomerase activity or expression of the telomerase catalytic subunit hTERT in this meningioma series. Telomerase activation was detected in 10/27 (37%) benign, but 18/19 (95%) non-benign meningiomas. We observed no significant overall correlation between loss of INK4a/INK4b expression and telomerase activation. In conclusion, our results suggest a greater role for losses of INK4a/INK4b gene products in meningioma formation and malignant progression than previously thought. Inactivation of p16/p15- and p14ARF-dependent pathways possibly in conjunction with telomerase activation might be critical steps for a meningioma cell towards escape from senescence, that is, immortalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Jääskeläinen J, Haltia M, Servo A: Atypical and anaplastic meningiomas: radiology, surgery, radiotherapy, and outcome. Surg Neurol 25: 233–242, 1986

    Google Scholar 

  2. Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM: Meningioma grading: an analysis of histologic parameters. Am J Surg Pathol 21: 1455–1465, 1997

    Google Scholar 

  3. Palma L, Celli P, Franco C, Cervoni L, Cantore G: Longterm prognosis for atypical and malignant meningiomas: a study of 71 surgical cases. J Neurosurg 86: 793–800, 1997

    Google Scholar 

  4. Simon M, von Deimling A, Larson JJ, Wellenreuther R, Kaskel P, Waha A, Warnick RE, Tew JM Jr., Menon AG: Allelic losses on chromosomes 14, 10, and 1 in atypical and malignant meningiomas: a genetic model of meningioma progression. Cancer Res. 56: 4696–4701, 1996

    Google Scholar 

  5. Weber RG, Boström J, Wolter M, Baudis M, Collins VP, Reifenberger G, Lichter P: Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression. Proc Natl Acad Sci. USA 94: 14719–14724, 1997

    Google Scholar 

  6. Sherr C: Cancer cell cycles. Science 274: 1672–1677, 1996

    Google Scholar 

  7. Ono Y, Ueki K, Joseph JT, Louis DN: Homozygous deletions of the CDKN2/p16 gene in dural hemangiopericytomas. Acta Neuropathol 91: 221–225, 1996

    Google Scholar 

  8. Quelle DE, Zindy F, Ashmun RA, Sherr CJ: Alternative reading frames of the INK4A tumour suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83: 993–1000, 1995

    Google Scholar 

  9. Haber DA: Splicing into senescence: the curious case of p16 and p19ARF. Cell 91: 555–558, 1997

    Google Scholar 

  10. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr C: Tumour suppression at the mouse INK4A locus mediated by the alternative reading frame product p19ARF. Cell 91: 649–659, 1997

    Google Scholar 

  11. Pomerantz J, Schreiber-Agus N, Liegéois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee H-W, Cordon-Cardo C, DePinho RA: The INK4A tumour suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92: 713–723, 1998

    Google Scholar 

  12. Zhang Y, Xiong Y, Yarbrough WG: ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4A locus deletion impairs both the Rb and p53 tumour suppression pathways. Cell 92: 725–734, 1998

    Google Scholar 

  13. Tsubari M, Tiihonen E, Laiho M: Cloning and characterization of p10, an alternatively spliced form of p15 cyclindependent kinase inhibitor. Cancer Res. 57: 2966–2973, 1997

    Google Scholar 

  14. Smith JR, Pereira-Smith OM: Replicative senescence: implications for in vivo aging and tumour suppression. Science 273: 63–67, 1996

    Google Scholar 

  15. Sedivy JM: Can ends justify the means?: Telomeres and the mechanisms of replicative senescence and immortalization in mammalian cells. Proc Natl Acad Sci USA 95: 9078–9081, 1998

    Google Scholar 

  16. Erickson S, Sangfelt O, Heyman M, Castro J, Einhorn S, Grander D: Involvement of the Ink4 proteins p16 and p15 in T-lymphocyte senescence. Oncogene 17: 595–602, 1998

    Google Scholar 

  17. Huschtscha LI, Reddel RR: p16(INK4a) and the control of cellular proliferative life span. Carcinogenesis 20: 921–926, 1999

    Google Scholar 

  18. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602, 1997

    Google Scholar 

  19. Sawa H, Kamada H, Ohshima TA, Noguchi A, Itoh N, Saruta K, Hara M, Saito I: Exogenous expression of p16INK4a is associated with decrease in telomerase activity. J Neuro-Oncol 42: 45–57, 1999

    Google Scholar 

  20. Fuxe J, Akusjarvi G, Goike HM, Roos G, Collins VP, Pettersson RF: Adenovirus-mediated overexpression of p15INK4B inhibits human glioma cell growth, induces replicative senescence, and inhibits telomerase activity similarly to p16INK4A. Cell Growth Differ 11: 376–384, 2000

    Google Scholar 

  21. Nugent CI, Lundblad V: The telomerase reverse transcriptase: components and regulation. Genes Dev. 12: 1073–1085, 1998

    Google Scholar 

  22. Holt SE, Shay JW, Wright WE: Refining the telomeretelomerase hypothesis of aging and cancer. Nature Biotech 14: 836–839, 1996

    Google Scholar 

  23. Shay JW, Bacchetti:A survey of telomerase activity in human cancer. Eur J Cancer 33: 787–791, 1997

    Google Scholar 

  24. Greider CW: Telomerase activation: one step on the road to cancer? Trends Genet 15: 109–112, 1999

    Google Scholar 

  25. Kiyono T, Foster SA, Koop JI, McDougall JK, Galloway DA, Klingelhutz AJ: Both Rb/p16INK4a inactivation and telomerase activity are required to immortalize human epithelial cells. Nature 396: 84–88, 1998

    Google Scholar 

  26. Simon M, Park TW, Leuenroth S, Hans VHJ, Löning T, Schramm J:Telomerase activity and expression of the telomerase catalytic subunit hTERT in meningioma progression. J Neurosurg 92: 832–840, 2000

    Google Scholar 

  27. Kleihues P, Burger PC, Scheithauer BW: Histological Typing of Tumours of the Central Nervous System. Springer Verlag, New York/Heidelberg, 1993

    Google Scholar 

  28. Louis DN, Budka H, von Deimling A: Meningiomas. In: Kleihues P, Cavenee WK (eds) Pathology and genetics of tumours of the nervous system. IARC International Agency for Research against Cancer, Lyon, 1997, pp 134–141

    Google Scholar 

  29. Murphy M, Chen JN, George DL: Establishment and characterization of a human leptomeningeal cell line. J Neurosci Res 30: 475–483, 1991

    Google Scholar 

  30. Simon M, Köster G, Menon AG, Schramm J: Functional evidence for a role of combined CDKN2A (p16–p14ARF)/CDKN2B (p15) gene inactivation in malignant gliomas. Acta Neuropathol 98: 444–452, 1999

    Google Scholar 

  31. Simon M, Köster G, Ludwig M, Mahlberg R, Rho S, Watzka M, Schramm J: Alternative splicing of the p15 cdk inhibitor in glioblastoma multiforme. Acta Neuropathol 102: 167–174, 2001

    Google Scholar 

  32. Park TW, Riethdorf S, Riethdorf L, Löning T, Jänicke F: Differential telomerase activity, expression of the telomerase catalytic sub-unit and telomerase-RNA in ovarian tumors. Int J Cancer 84: 426–431, 1999

    Google Scholar 

  33. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stockert E, Day III RS, Johnson BE, Skolnick MH: A cellcycle regulator potentially involved in genesis of many tumour types. Science 264: 436–440, 1994

    Google Scholar 

  34. Cairns P, Polascik TJ, Eby Y, Tokino K, Califano F, Merlo A, Mao L, Herath J, Jenkins R, Westra W, Rutter JL, Buckler A, Gabrielson E, Tockman M, Cho KR, Hedrick L, Bova GS, Isaacs W, Koch W, Schwab D, Sidransky D: Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nature Genet 11: 210–212, 1995

    Google Scholar 

  35. Jen J, Harper JW, Bigner SH, Bigner DD, Papadopoulos N, Markowitz S, Willson JKV, KinzlerK W, Vogelstein B: Deletion of p16 and p15 genes in brain tumours. Cancer Res. 54: 6353–6358, 1994

    Google Scholar 

  36. Tse JY, Ng HK, Lo KW, Chong EY, Lam PY, Ng EK, Poon WS, Huang DP: Analysis of cell cycle regulators p16INK4A, pRb, and CDK4 in low-and high-grade meningiomas. Hum Pathol 29: 1200–1207, 1998

    Google Scholar 

  37. Ohkoudo M, Sawa H, Hara M, Saruta K, Aiso T, Ohki R, Yamamoto H, Maemura E, Shiina Y, Fujii M, Saito I: Expression of p53, MDM2 protein and Ki-67 antigen in recurrent meningiomas. J Neuro-Oncol 38: 41–49, 1998

    Google Scholar 

  38. Wang JL, Zhang ZJ, Hartman M, Smits A, Westermark B, Muhr C, Nister M: Detection of TP53 gene mutation in human meningiomas: a study using immunohistochemistry, polymerase chain reaction/single-strand conformation polymorphism and DNA sequencing techniques on paraffin-embedded samples. Int J Cancer 64: 223–228, 1995

    Google Scholar 

  39. Gazzeri S, Della Valle V, Chaussade L, Brambilla C, Larsen CJ, Brambilla E: The human p19ARF protein encoded by the beta transcript of the p16INK4a gene is frequently lost in small cell lung cancer. Cancer Res. 58: 3926–3931, 1998

    Google Scholar 

  40. Bahuau M, Vidaud D, Jenkins RB, Bieche I, Kimmel DW, Assouline B, Smith JS, Alderete B, Cayuela JM, Harpey JP, Caille B, Vidaud M: Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumours. Cancer Res. 58: 2298–2303, 1998

    Google Scholar 

  41. Simon M, von Deimling A, Menon AG: Absence of p16 mutations in malignant meningioma progression. Zentralbl Neurochir Suppl 1997: 6(A), 1997

  42. Sato K, Schauble B, Kleihues P, Ohgaki H: Infrequent alterations of the p15, p16, CDK4 and cyclin D1 genes in non-astrocytic human brain tumours. Int J Cancer 66: 305–308, 1996

    Google Scholar 

  43. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D: 5'CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nature Med 1: 686–692, 1995

    Google Scholar 

  44. Batova A, Diccianni MB, Yu JC, Nobori T, Link MP, Pullen J, Yu AL: Frequent and selective methylation of p15 and deletion of both p15 and p16 in T-cell acute lymphoblastic leukemia. Cancer Res. 57: 832–836, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Simon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, M., Park, TW., Köster, G. et al. Alterations of INK4a p16—p14ARF /INK4b p15 Expression and Telomerase Activation in Meningioma Progression. J Neurooncol 55, 149–158 (2001). https://doi.org/10.1023/A:1013863630293

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013863630293

Navigation