International Journal of Computer Vision

, Volume 46, Issue 2, pp 103–128

Cluster Analysis of Biomedical Image Time-Series

  • Axel Wismüller
  • Oliver Lange
  • Dominik R. Dersch
  • Gerda L. Leinsinger
  • Klaus Hahn
  • Benno Pütz
  • Dorothee Auer
Article

DOI: 10.1023/A:1013550313321

Cite this article as:
Wismüller, A., Lange, O., Dersch, D.R. et al. International Journal of Computer Vision (2002) 46: 103. doi:10.1023/A:1013550313321

Abstract

In this paper, we present neural network clustering by deterministic annealing as a powerful strategy for self-organized segmentation of biomedical image time-series data identifying groups of pixels sharing common properties of local signal dynamics. After introducing the theoretical concept of minimal free energy vector quantization and related clustering techniques, we discuss its potential to serve as a multi-purpose computer vision strategy to image time-series analysis and visualization for many fields of medicine ranging from biomedical basic research to clinical assessment of patient data. In particular, we present applications to (i) functional MRI data analysis for human brain mapping, (ii) dynamic contrast-enhanced perfusion MRI for the diagnosis of cerebrovascular disease, and (iii) magnetic resonance mammography for the analysis of suspicious lesions in patients with breast cancer. This wide scope of completely different medical applications illustrates the flexibility and conceptual power of neural network vector quantization in this context. Although there are obvious methodological similarities, each application requires specific careful consideration w.r.t. data preprocessing, postprocessing and interpretation. This challenge can only be managed by close interdisciplinary cooperation of medical doctors, engineers, and computer scientists. Hence, this field of research can serve as an example for lively cross-fertilization between computer vision and related research.

clusteringtime-seriesneural networksdeterministic annealingmedical imagingfunctional MRIdynamic perfusion MRIMRI mammography

Copyright information

© Kluwer Academic Publishers 2002

Authors and Affiliations

  • Axel Wismüller
    • 1
  • Oliver Lange
    • 1
  • Dominik R. Dersch
    • 2
  • Gerda L. Leinsinger
    • 1
  • Klaus Hahn
    • 1
  • Benno Pütz
    • 3
  • Dorothee Auer
    • 3
  1. 1.Institut für Radiologische DiagnostikLudwig-Maximilians-Universität München, Klinikum InnenstadtMünchenGermany
  2. 2.Crux Cybernetics Corp.SydneyAustralia
  3. 3.Max Planck Institute of PsychiatryMunichGermany