Skip to main content
Log in

Growth-dependent properties of KTP crystals and PPKTP structures

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Growth of optically uniform and single ferroelectric domain KTP crystals is of prime importance for frequency-conversion applications. In the course of KTP growth from pure self-fluxes the flux becomes enriched in potassium causing a gradual increase of potassium content in the crystal as well. We have shown that such an effect can be well characterized by a corresponding increase in the Curie temperature of the crystal. Establishment of the potassium concentration gradients is followed by charge separation and production of a built-in electric field, which can be enhanced or diminished also by the incorporation of charge-compensating residual impurities. The magnitude of the built-in electric field is directly proportional to the projection of the potassium concentration gradient on the crystal's Z-axis, and it defines the domain direction in immersion seeded or different configurations of the top-seeded growth of KTP crystals. Detailed investigation of the domain formation mechanisms has allowed us to suggest a number of ways of growing single domain crystals, such as top-seeded growth with pulling in the Z-direction. Pulling in the X-direction is shown to yield predominantly bi-domain crystals. The formation of bi-domains and complex domain structures along the growth sector boundaries is explained in terms of edge-like and apex-like growth perturbations, respectively, which are due to temperature fluctuations at the growth interface. The knowledge of parameters influencing the domain formation mechanisms has allowed us to develop a technique for obtaining as-grown periodic domain structures necessary for large aperture (high-power) frequency conversion applications. © 2001 Kluwer Academic Publishers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. K. ChengandJ. D. Bierlein,Ferroelectrics 142(1993) 209.

    Google Scholar 

  2. N. Angert, M. Tseitlin, L. Kaplun, E. YashchinandM. Roth, ibid.142(1994) 117.

    Google Scholar 

  3. G. M. LoiaconoandR. A. Stolzenberger,Appl. Phys. Lett. 53(1988) 1498.

    Google Scholar 

  4. F. C. Zumsteg, J. D. BierleinandT. E. Gier,J. Appl. Phys. 47(1976) 4980.

    Google Scholar 

  5. J. D. BierleinandF. Ahmed,Appl. Phys. Lett. 51(1987) 1328.

    Google Scholar 

  6. L. P. Shi, J. Chrosch, J. Y. WangandY. G. Lin,Cryst. Res. Technol. 27(1992) K76.

    Google Scholar 

  7. L. K. Cheng, L. T. Cheng, J. Galperin, P. A. Morris HotsenpillerandJ. D. Bierlein,J. Cryst. Growth 137(1994) 107.

    Google Scholar 

  8. N. Angert, L. Kaplun, M. Tseitlin, E. YashchinandM. Roth, ibid.137(1994) 116.

    Google Scholar 

  9. M. N. SatyanaryanandH. L. Bhat, ibid.181(1997) 281.

    Google Scholar 

  10. J. A. Armstrong, N. Blombergen, J. DucuingandP. S. Pershan,Phys. Rev. 127(1962) 1918.

    Google Scholar 

  11. D. Eger, M. Oron, M. KatzandA. Zussman,Appl. Phys. Lett. 64(1994) 3208.

    Google Scholar 

  12. A. Arie, G. Rosenman, V. Mahal, A. Skliar, M. Oron, M. KatzandD. Eger,Opt. Commun. 142(1997) 265.

    Google Scholar 

  13. G. M. Loiacono, T. F. McgeeandG. Kostecky,J. Cryst. Growth 104(1990) 389.

    Google Scholar 

  14. R. J. Bolt, ibid.126(1993) 175.

    Google Scholar 

  15. N. Angert, M. Tseitlin, E. YashchinandM. Roth,Appl. Phys. Lett. 67(1995) 1941.

    Google Scholar 

  16. M. E. Hagerman, V. L. KozhevnikovandK. R. Poeppelmeier,Chem. Mater. 5(1993) 1211.

    Google Scholar 

  17. P. A. Morris, A. Foretti, J. D. BierleinandG. M. Loiacono,J. Cryst. Growth 109(1991) 367.

    Google Scholar 

  18. M. G. Roelofs,J. Appl. Phys. 65(1989) 4976.

    Google Scholar 

  19. V. D. Kugel, G. Rosenman, N. Angert, E. YashchinandM. Roth, ibid.76(1994) 4823.

    Google Scholar 

  20. V. A. Kolesinskas, N. I. Pavlova, I. S. RezandJ. P. Grigas,Sov. Phys.-Collect. 22(1982) 68.

    Google Scholar 

  21. T. Sasaki, A. Miyamoto, A. YokotaniandS. Nakai,J. Cryst. Growth 128(1993) 950.

    Google Scholar 

  22. L. T. Cheng, L. K. Cheng, R. L. HarlowandJ. D. Bierlein,Appl. Phys. Lett. 64(1994) 155.

    Google Scholar 

  23. V. I. Chani, K. Shimamura, Sh. EndoandT. Fukuda,J. Cryst. Growth 173(1997) 117.

    Google Scholar 

  24. K. T. Stevens, L. E. Halliburton, M. Roth, N. AngertandM. Tseitlin,J. Appl. Phys. 88(2000) 6239.

    Google Scholar 

  25. R. J. BoltandW. J. P. Enckevort,J. Cryst. Growth 119(1992) 329.

    Google Scholar 

  26. A. A. Chernov, ibid.24/25(1974) 11.

    Google Scholar 

  27. J. A. Burton, R. C. PrimandW. P. Slichter,J. Chem. Phys. 21(1953) 1987.

    Google Scholar 

  28. D. ElwellandH. J. Scheel, “Crystal Growth from Hightemperature Solutions” (Academic Press, New York, 1975) p. 294.

    Google Scholar 

  29. F. J. Kumar, D. Jayaraman, C. SubramanianandP. Ramasamy,J. Cryst. Growth 137(1994) 535.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roth, M., Angert, N. & Tseitlin, M. Growth-dependent properties of KTP crystals and PPKTP structures. Journal of Materials Science: Materials in Electronics 12, 429–436 (2001). https://doi.org/10.1023/A:1011835314438

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011835314438

Keywords

Navigation