Skip to main content
Log in

Charge-transfer Interaction: A Driving Force for Cyclodextrin Inclusion Complexation

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

PM3 calculations were performed on the complexation of α-cyclodextrin (α-CD) with nitrobenzene, benzoic acid, benzoate anion, 4-nitrophenol, and 4-nitrophenolate anion. The results, in agreement with the experimental observations, indicated that the complex α-CD-benzoic acid was more stable than α-CD-nitrobenzene, and α-CD-4-nitrophenolate was more stable than α-CD-4-nitrophenol. Frontier orbital analysis suggested that charge-transfer interaction led to such behaviors, and hence constituted a nontrivial driving force in the molecular recognition of α-CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Szejtli: Chem. Rev. 98, 1743 (1998).

    Google Scholar 

  2. K. Takahashi: Chem. Rev. 98, 2013 (1998). (b) A.R. Hedges: Chem. Rev. 98, 2035 (1998). (c) K. Uekama, F. Hirayama, and T. Irie: Chem. Rev. 98, 2045 (1998).

    Google Scholar 

  3. R. Breslow: Pure Appl. Chem. 66, 1573 (1994). (b) R. Breslow: Acc. Chem. Res. 28, 146 (1995). (c) R. Breslow and S.D. Dong: Chem. Rev. 98, 1997 (1998).

    Google Scholar 

  4. H.-J. Schneider: Angew. Chem. Int. Ed. Engl. 30, 1417 (1991). (b) M.V. Rekharsky and Y. Inoue: Chem. Rev. 98, 1875 (1998).

    Google Scholar 

  5. K.A. Connors: Chem. Rev. 97, 1325 (1997).

    Google Scholar 

  6. J.M. Madrid, F. Mendicuti, and W.L. Mattice: J. Phys. Chem. B 102, 2037 (1998). (b) E. Cervello and C. Jaime: J. Mol. Struct. (THEOCHEM) 428, 195 (1998).

    Google Scholar 

  7. N. Bodor, M.-J. Huang, and J.D. Watts, J. Incl. Phenom. 25, 97 (1996). (b) M.-J. Huang, J.D. Watts, and N. Bodor: Int. J. Quantum Chem. 64, 711 (1997). (c) M.-J. Huang, J.D.Watts, and N. Bodor: Int. J. Quantum Chem. 65, 1135 (1997).

    Google Scholar 

  8. X.-S. Li, L. Liu, Q.-X. Guo, S.-D. Chu, and Y.-C. Liu: Chem. Phys. Lett. 307, 117 (1999). (b) L. Liu, X.-S. Li, Q.-X. Guo, and Y.-C. Liu: Chin. Chem. Lett. 10, 1053 (1999).

    Google Scholar 

  9. D.M. Davies and J.R. Savage: J. Chem. Res. (S) 94 (1993). (b) D.M. Davies, and J.R. Savage: J. Chem. Res. (M) 663 (1993). (c) D.M. Davies and M.E. Deary: J. Chem. Soc. Perkin Trans. 2, 1287 (1995).

  10. J.H. Park and T.W. Nah: J. Chem. Soc. Perkin Trans. 2, 1359 (1994).

  11. Q.-X. Guo, S.-H. Luo, and Y.-C. Liu: J. Incl. Phenom. 30, 173 (1998). (b) H.-M. Zhang, S.-H. Luo, C. Chen, L. Liu, Q.-X. Guo, and Y.-C. Liu: Chem. Res. Chin. Univ. 15, 17 (1999). (c) L. Liu and Q.-X. Guo: J. Phys. Chem. B 103, 3461 (1999).

    Google Scholar 

  12. Q.-X. Guo, S.-H. Luo, H. Wang, M.-S. Zhang, and Y.-C. Liu: J. Chem. Res. (S) 38 (1996). (b) L. Liu and Q.-X. Guo: J. Chem. Inf. Comput. Sci. 39, 133 (1999).

  13. I. Tabushi, Y. Kiyosuke, T. Sugimoto, and K. Yamamura: J. Am. Chem. Soc. 100, 916 (1978). (b) Y. Matsui: Bull. Chem. Soc. Jpn. 55, 1246 (1982).

    Google Scholar 

  14. M.R. Eftink, M.L. Andy, K. Bystrom, H.D. Perlmutter, and D.S. Kristol: J. Am. Chem. Soc. 111, 6765 (1989).

    Google Scholar 

  15. M. Sakurai, M. Kitagawa, H. Hoshi, Y. Inoue, and R. Chujo: Carbohydr. Res. 198, 191 (1989).

    Google Scholar 

  16. C. Hansch, A. Leo, and R.W. Taft: Chem. Rev. 91, 165 (1991).

    Google Scholar 

  17. K.A. Connors: J. Pharm. Sci. 84, 843 (1995).

    Google Scholar 

  18. S.-H. Luo: Master Thesis, Lanzhou University, 1995.

  19. R.J. Bergeron, M.A. Channing, and K.A. McGovern: J. Am. Chem. Soc. 100, 2878 (1978).

    Google Scholar 

  20. A.B. Wong, S.-F. Lin, and K.A. Connors: J. Pharm. Sci. 72, 388 (1983). (b) S.-F. Lin and K.A. Connors: J. Pharm. Sci. 72, 1333 (1983).

    Google Scholar 

  21. J.J.P. Stewart: J. Comput. Chem. 10, 209 (1989). (b) Y.-J. Zheng and K.M. Merz, Jr.: J. Comput. Chem. 13, 1151 (1992).

    Google Scholar 

  22. X.-S. Li, L. Liu, T.-W. Mu, and Q.-X. Guo: Monatsh. Chem. 131, 849 (2000). (b) L. Liu, X.-S. Li, T.-W. Mu, Q.-X. Guo, and Y.-C. Liu: J. Incl. Phenom. 38, 199 (2000). (c) L. Liu, X.-S. Li, K.-S. Song, and Q.-X. Guo: J. Mol. Struct. (Theochem) 531, 127 (2000).

    Google Scholar 

  23. GAUSSIAN 98, Revision A.7, M. J. Frisch et al., Gaussian Inc., Pittsburgh PA, 1998.

    Google Scholar 

  24. K.K. Chacko and W. Saenger: J. Am. Chem. Soc. 103, 1708 (1981).

    Google Scholar 

  25. D.J. Wood, F.E. Hruska, and W. Saenger: J. Am. Chem. Soc. 99, 1735 (1977). (b) Y. Inoue, H. Hoshi, M. Sakurai, and R. Chujo: J. Am. Chem. Soc. 107, 2319 (1985).

    Google Scholar 

  26. B. S. Jursic, Z. Zdravkovski, and A. D. French: J. Mol. Struct. (Theochem) 366, 113 (1996).

    Google Scholar 

  27. K. Morokuma: Acc. Chem. Res. 10, 294 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Song, KS., Li, XS. et al. Charge-transfer Interaction: A Driving Force for Cyclodextrin Inclusion Complexation. Journal of Inclusion Phenomena 40, 35–39 (2001). https://doi.org/10.1023/A:1011170026406

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011170026406

Navigation