J. E. Besag and P. J. Green, “Spatial statistics and Bayesian computation (with discussion),” *J. Roy. Statist. Soc. Ser. B* vol. 55 pp. 25–38, 1993.

J. E. Besag, P. J. Green, D. Higdon, and K. L. Mengersen, “Bayesian computation and stochastic systems (with discussion),” *Statistical Science* vol. 10 pp. 3–66, 1995.

J. D. Doll, P. J. Rossky, and H. L. Friedman, “Brownian dynamics as smart Monte Carlo simulation,” *Journal of Chemical Physics* vol. 69 pp. 4628–4633, 1978.

D. Down, S. P. Meyn, and R. L. Tweedie, “Exponential and uniform ergodicity of Markov processes,” *Ann. Probab.* vol. 23 pp. 1671–1691, 1995.

S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid Monte Carlo,” *Physics Letters B* vol. 195 pp. 216–222, 1987.

U. Grenander and M. I. Miller, “Representations of knowledge in complex systems (with discussion),” *J. Roy. Statist. Soc. Ser. B* vol. 56 pp. 549–603, 1994.

C. R. Hwang, S. Y. Hwang-Ma, and S. J. Sheu, “Accelerating Gaussian diffusions,” *Ann. Appl. Probab.* vol. 3 pp. 897–913, 1993.

Ioannis Karatzas and Steven E. Shreve, *Brownian Motion and Stochastic Calculus*, Springer-Verlag: New York, 1991.

J. Kent, “Time-revesible diffusions,” *Adv. Appl. Probab.* vol. 10 pp. 819–835, 1978.

P. E. Kloeden and E. Platen, *Numerical solution of stochastic differential equations*, Springer-Verlag: Berlin, 1992.

K. L. Mengersen and R. L. Tweedie, “Rates of convergence of the Hastings and Metropolis algorithms,” *Annals of Statistics* vol. 24 pp. 101–121, 1996.

S. P. Meyn and R. L. Tweedie, *Markov Chains and Stochastic Stability*, Springer-Verlag: London, 1993.

S. P. Meyn and R. L. Tweedie, “Stability of Markovian processes II: Continuous time processes and sampled chains,” *Adv. Appl. Probab.* vol. 25 pp. 487–517, 1993.

S. P. Meyn and R. L. Tweedie, “Stability of Markovian processes III: Foster-Lyapunov criteria for continuous time processes,” *Adv. Appl. Probab.* vol. 25 pp. 518–548, 1993.

T. Ozaki, “A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: A local linearization approach,” *Statistica Sinica* vol. 2 pp. 113–135, 1992.

M. Pollak and D. Siegmund, “A diffusion process and its applications to detecting a change in the drift of Brownian motion,” *Biometrika* vol. 72 pp. 207–216, 1985.

G. O. Roberts and R. L. Tweedie, “Exponential convergence of Langevin diffusions and their discrete approximations,” *Bernoulli* vol. 2 pp. 341–364, 1996.

G. O. Roberts and R. L. Tweedie, “Geometric convergence and central limit theorems for multi-dimensional Hastings and Metropolis algorithms,” *Biometrika* vol. 83 pp. 95–110, 1996.

I. Shoji, *Approximation of continuous time stochastic processes by a local linearization method*, Technical report, The Institute of Statistical Mathematics, Tokyo, 1995.

I. Shoji and T. Ozaki, “A statistical method of estimation and simulation for systems of stochastic differential equations,” *Biometrika* vol. 85 pp. 240–243, 1998.

A. F. M. Smith and G. O. Roberts, “Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion),” *J. Roy. Statist. Soc. Ser. B* vol. 55 pp. 3–24, 1993.

O. Stramer and R. L. Tweedie, *Langevin-type models II: Self-targeting candidates for MCMC algorithms, Methodology and Computing in Applied Probability* vol. 1 pp. 307–328, 1999.

O. Stramer and R. L. Tweedie, “Existence and stability of weak solutions to stochastic differential equations with non-smooth coefficients,” *Statistica Sinica* vol. 7 pp. 577–593, 1997.

D. W. Stroock and S. R. S. Varadhan, *Multidimensional Diffusion Processes*, Springer-Verlag: Berlin, 1979.

L. Tierney, “Markov chains for exploring posterior distributions (with discussion),” *Ann. Statist.* vol. 22 pp. 1701–1762, 1994.

D. Toussaint, “Introduction to algorithms for Monte Carlo simulations and their applications to QCD,” *Computer Physics Communications* vol. 56 pp. 69–92, 1989.

P. Tuominen and R. L. Tweedie, “Subgeometric rates of convergence of f-ergodic Markov chains,” *Adv. Appl. Probab.* vol. 26 pp. 775–798, 1994.