LangevinType Models I: Diffusions with Given Stationary Distributions and their Discretizations*
 O. Stramer,
 R. L. Tweedie
 … show all 2 hide
Rent the article at a discount
Rent now* Final gross prices may vary according to local VAT.
Get AccessAbstract
We describe algorithms for estimating a given measure π known up to a constant of proportionality, based on a large class of diffusions (extending the Langevin model) for which π is invariant. We show that under weak conditions one can choose from this class in such a way that the diffusions converge at exponential rate to π, and one can even ensure that convergence is independent of the starting point of the algorithm. When convergence is less than exponential we show that it is often polynomial at verifiable rates. We then consider methods of discretizing the diffusion in time, and find methods which inherit the convergence rates of the continuous time process. These contrast with the behavior of the naive or Euler discretization, which can behave badly even in simple cases. Our results are described in detail in one dimension only, although extensions to higher dimensions are also briefly described.
 Besag, J. E., Green, P. J. (1993) Spatial statistics and Bayesian computation (with discussion). J. Roy. Statist. Soc. Ser. B 55: pp. 2538
 Besag, J. E., Green, P. J., Higdon, D., Mengersen, K. L. (1995) Bayesian computation and stochastic systems (with discussion). Statistical Science 10: pp. 366
 Doll, J. D., Rossky, P. J., Friedman, H. L. (1978) Brownian dynamics as smart Monte Carlo simulation. Journal of Chemical Physics 69: pp. 46284633
 Down, D., Meyn, S. P., Tweedie, R. L. (1995) Exponential and uniform ergodicity of Markov processes. Ann. Probab. 23: pp. 16711691
 Duane, S., Kennedy, A. D., Pendleton, B. J., Roweth, D. (1987) Hybrid Monte Carlo. Physics Letters B 195: pp. 216222
 Grenander, U., Miller, M. I. (1994) Representations of knowledge in complex systems (with discussion). J. Roy. Statist. Soc. Ser. B 56: pp. 549603
 Hwang, C. R., HwangMa, S. Y., Sheu, S. J. (1993) Accelerating Gaussian diffusions. Ann. Appl. Probab. 3: pp. 897913
 Karatzas, I., Shreve, S. E. (1991) Brownian Motion and Stochastic Calculus. SpringerVerlag, New York
 Kent, J. (1978) Timerevesible diffusions. Adv. Appl. Probab. 10: pp. 819835
 Kloeden, P. E., Platen, E. (1992) Numerical solution of stochastic differential equations. SpringerVerlag, Berlin
 Mengersen, K. L., Tweedie, R. L. (1996) Rates of convergence of the Hastings and Metropolis algorithms. Annals of Statistics 24: pp. 101121
 Meyn, S. P., Tweedie, R. L. (1993) Markov Chains and Stochastic Stability. SpringerVerlag, London
 Meyn, S. P., Tweedie, R. L. (1993) Stability of Markovian processes II: Continuous time processes and sampled chains. Adv. Appl. Probab. 25: pp. 487517
 Meyn, S. P., Tweedie, R. L. (1993) Stability of Markovian processes III: FosterLyapunov criteria for continuous time processes. Adv. Appl. Probab. 25: pp. 518548
 Ozaki, T. (1992) A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: A local linearization approach. Statistica Sinica 2: pp. 113135
 Pollak, M., Siegmund, D. (1985) A diffusion process and its applications to detecting a change in the drift of Brownian motion. Biometrika 72: pp. 207216
 Roberts, G. O., Tweedie, R. L. (1996) Exponential convergence of Langevin diffusions and their discrete approximations. Bernoulli 2: pp. 341364
 Roberts, G. O., Tweedie, R. L. (1996) Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83: pp. 95110
 Shoji, I. (1995) Approximation of continuous time stochastic processes by a local linearization method. The Institute of Statistical Mathematics, Tokyo
 Shoji, I., Ozaki, T. (1998) A statistical method of estimation and simulation for systems of stochastic differential equations. Biometrika 85: pp. 240243
 Smith, A. F. M., Roberts, G. O. (1993) Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods (with discussion). J. Roy. Statist. Soc. Ser. B 55: pp. 324
 Stramer, O., Tweedie, R. L. (1999) Langevintype models II: Selftargeting candidates for MCMC algorithms, Methodology and Computing in Applied Probability 1: pp. 307328
 Stramer, O., Tweedie, R. L. (1997) Existence and stability of weak solutions to stochastic differential equations with nonsmooth coefficients. Statistica Sinica 7: pp. 577593
 Stroock, D. W., Varadhan, S. R. S. (1979) Multidimensional Diffusion Processes. SpringerVerlag, Berlin
 Tierney, L. (1994) Markov chains for exploring posterior distributions (with discussion). Ann. Statist. 22: pp. 17011762
 Toussaint, D. (1989) Introduction to algorithms for Monte Carlo simulations and their applications to QCD. Computer Physics Communications 56: pp. 6992
 Tuominen, P., Tweedie, R. L. (1994) Subgeometric rates of convergence of fergodic Markov chains. Adv. Appl. Probab. 26: pp. 775798
 Title
 LangevinType Models I: Diffusions with Given Stationary Distributions and their Discretizations*
 Journal

Methodology And Computing In Applied Probability
Volume 1, Issue 3 , pp 283306
 Cover Date
 19991001
 DOI
 10.1023/A:1010086427957
 Print ISSN
 13875841
 Online ISSN
 15737713
 Publisher
 Kluwer Academic Publishers
 Additional Links
 Topics
 Keywords

 Markov chain Monte Carlo
 diffusions
 Langevin models
 posterior distributions
 irreducible Markov processes
 exponential ergodicity
 uniform ergodicity
 Euler schemes
 Industry Sectors
 Authors

 O. Stramer ^{(1)}
 R. L. Tweedie ^{(2)}
 Author Affiliations

 1. Department of Statistics and Actuarial Science, University of Iowa, Iowa City, IA, 52242, USA
 2. Division of Biostatistics, University of Minnesota, Minneapolis, MN, 55455, USA