Skip to main content
Log in

Improving sampling designs for measuring restoration in aquatic habitats

  • Published:
Journal of Aquatic Ecosystem Stress and Recovery

Abstract

Restoration of degraded habitat is an increasingly important toll for management. Unfortunately, much of the emphasis has been on restoring large structural elements of habitat (e.g. planting vegetation,removing weeds), with little consideration about how well these activities restore ecologically functioning habitat. There has been considerable research in recent years into improving sampling designs and analytical techniques to measure the effects of environmental impacts taking into account the large spatial and temporal variability that occurs naturally in undisturbed habitats. In a similar manner to detection of impacts, restoration needs to be measured as an interaction between spatial and temporal components of variation against a variable background. Very few studies of restoration have explicitly addressed how best to do this. Neither have they attempted to assess the usefulness of some of these new techniques for measuring restoration. This review discusses some of the problems that need to be considered when measuring restoration and the potential value of some of these new methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, P., 1995. Reversing the trend. Wetlands (Australia) 14: 1–5.

    Google Scholar 

  • Addison, R.F. & K.R. Clarke (eds), 1990. Biological effects on pollutants in a subtropical environment. J. Exp. Mar. Biol. Ecol. 138: 1–166.

    Google Scholar 

  • Anderson, P., 1995. Ecological restoration and creation: a review. Biol. J. Linn. Soc. 56: 187–211.

    Google Scholar 

  • Bayne, B.L., K.R. Clarke & J.S. Gray (eds), 1988. Biological effects of pollutants. Results of a practical workshop. Mar. Ecol. Progr. Ser. 46: 1–278.

  • Bender, E.A., T.J. Case & M.E. Gilpin, 1984. Perturbation experiments in community ecology. Ecology 65: 1–13.

    Article  Google Scholar 

  • Bernstein, B.B. & J. Zalinski, 1983. An optimal sampling design and power tests for environmental biologists. Environ. Manage. 16: 335–343.

    Google Scholar 

  • Botkin, D.B., 1990. Discordant Harmonies: A New Ecology for the Twenty-first Century. Oxford University Press, Oxford.

    Google Scholar 

  • Bradshaw, A.D., 1987. Restoration: an acid test for ecology. In: W.J. Jordon, M.E. Gilpin & J.D. Aber (eds), Restoration Ecology: A Synthetic Approach to Ecological Research. Cambridge University Press, Cambridge: 23–29.

    Google Scholar 

  • Bray, J.R. & J.T. Curtis, 1957. An ordination of the upland forest communities of Southern Wisconsin. Ecol. Monogr. 27: 325–349.

    Article  Google Scholar 

  • Brinson, M.M. & R. Rheinhardt, 1996. The role of reference wetlands in functional assessment and mitigation. Ecol. Appl. 6: 69–76.

    Google Scholar 

  • Cairns, J. Jr., 1990. Lack of theoretical basis for predicting rate and pathways of recovery. Environ. Manage. 14: 517–526.

    Article  Google Scholar 

  • Chapman, M.G., 1998. Relationships between spatial patterns of benthic assemblages in a mangrove forest using different levels of taxonomic resolution. Mar. Ecol. Progr. Ser. 162: 71–78.

    Google Scholar 

  • Chapman, M.G. & A.J. Underwood, 1997. Concepts and issues in restoration of mangrove forests in urban environments. In: N. Klomp & I. Lunt (eds), Frontiers in Ecology: Building the Links. Elsevier Science, Oxford: 103–114.

    Google Scholar 

  • Chapman, M.G. & A.J. Underwood, 1999. The need for a practical scientific protocol to measure successful restoration. Wetlands (Australia) (in review).

  • Chapman, M.G., A.J. Underwood & G.A. Skilleter, 1995. Variability at different spatial scales between a subtidal assemblage exposed to the discharge of sewage and two control assemblages. J. Exp. Mar. Biol. Ecol. 189: 103–122.

    Article  Google Scholar 

  • Clarke, K.R., 1993. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18: 117–143.

    Google Scholar 

  • Clarke, K.R. & M. Ainsworth, 1993. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Progr. Ser. 92: 205–219.

    Google Scholar 

  • Clarke, K.R. & R.H. Green, 1988. Statistical design & analysis for a ‘biological effects’ study. Mar. Ecol. Progr. Ser. 46: 213–226.

    Google Scholar 

  • Clarke, K.R. & R.M. Warwick, 1998. Quantifying structural redundancy in ecological communities. Oecologia (Berl.) 113: 278–289.

    Article  Google Scholar 

  • Connell, J.H., 1978. Diversity in tropical rainforests and coral reefs. Science 199: 1302–1310.

    PubMed  Google Scholar 

  • Dawson-Shepherd, A., R.M. Warwick, K.R. Clarke & B.E. Brown, 1992. An analysis of fish community responses to coral mining in the Maldives. Environ. Biol. Fish. 33: 367–380.

    Google Scholar 

  • Den Boer, P.J., 1968. Spreading of risk and stabilization of animal numbers. Acta Biotheor. 18: 165–194.

    Article  PubMed  CAS  Google Scholar 

  • Detenbeck, N.E., P.W. DeVore, J.G. Niemi & A. Lima, 1992. Recovery of temperate-stream fish communities from disturbance: a review of case studies and synthesis of theory. Environ. Manage. 16: 33–53.

    Article  Google Scholar 

  • Edwards, C.J., B.L. Griswold, R.A. Tubb, E.C. Weber & L.C. Woods, 1984. Mitigating effects of artificial riffles and pools on the fauna of a channelized warmwater stream. N. Amer. J. Fish. Manage. 4: 194–203.

    Article  Google Scholar 

  • Ferrell, D.J., S.E. McNeill, D.G. Worthington & J.D. Bell, 1993. Temporal and spatial variation in the abundance of fish associated with the seagrass Posidonia australisin south-eastern Australia. Aust. J. mar. Freshwater Res. 44: 881–899.

    Article  Google Scholar 

  • Galatowitsch, S.M. & A.G. van der Valk, 1996. Characteristics of recently restored wetlands in the prairie pothole region. Wetlands 16: 75–83.

    Article  Google Scholar 

  • Galatowitsch, S.M., D.C. Whited & J.R. Tester, 1999. Development of community metrics to evaluate recovery in Minnesota wetlands. J. Aquat. Ecosyst. Stress and Recovery 6: 217–234.

    Article  Google Scholar 

  • Gillanders, B.M., 1997. Patterns of abundance and size structure in the blue groper, Achoerodus viridis(Pisces, Labridae): evidence of links between estuaries and coastal reefs. Env. Biol. Fish. 49: 153–173.

    Article  Google Scholar 

  • Glasby, T.M. & A.J. Underwood, 1996. Sampling to differentiate between pulse and press perturbations. Environ. Monitor. Assess. 42: 241–252.

    Article  Google Scholar 

  • Glasby, T.M. & A.J. Underwood, 1998. Determining positions for control locations in environmental studies of estuarine marinas. Mar. Ecol. Progr. Ser. 171: 1–14.

    Google Scholar 

  • Gray, J.S., M. Aschan, M.R. Carr, K.R. Clarke, R.H. Green, T.H. Pearson, R. Rosenberg & R.M. Warwick, 1988. Analysis of community attributes of the benthic macrofauna of Frierfjord/Langesundfjord and in a mesocosm experiment. Mar. Ecol. Progr. Ser. 46: 151–165.

    Google Scholar 

  • Grayson, J.E., M.G. Chapman & A.J. Underwood, 1998. The assessment of restoration of habitat in urban wetlands. Landsc. Urb. Plan. 43: 227–236.

    Article  Google Scholar 

  • Green, R.H., 1979. Sampling Design and Statistical Methods for Environmental Biologists. Wiley, New York.

    Google Scholar 

  • Hobbs, R.J. & D.A. Norton, 1996. Towards a conceptual framework for restoration ecology. Restor. Ecol. 4: 93–110.

    Article  Google Scholar 

  • Hurlbert, S.H., 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54: 187–211.

    Article  Google Scholar 

  • Jenkins, G.P., M.J. Keough & P.A. Hamer, 1998. The contributions of habitat structure and larval supply to broad-scale recruitment variability in a temperate zone, seagrass-associated fish. J. Exp. Mar. Biol. Ecol. 226: 259–278.

    Article  Google Scholar 

  • Kane, G.S., 1994. Restoration or preservation? Reflections on a clash of environmental philosophies. In: A.D. Baldwin Jr., J. de Luce & C. Pletsch (eds), Beyond Preservation: Restoring & Inventing Landscapes. University of Minnesota Press, Minneapolis: 69–84.

    Google Scholar 

  • Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant & I.J. Schlosser, 1986. Assessing Biological Integrity in Running Waters: A Method & its Rationale. Illinois Natural History Survey, Illinois.

    Google Scholar 

  • Kentula, M.E., R.P. Brooks, S.E. Gwin, C.C. Holland, A.D. Sherman & J.C. Sifneos, 1992. An Approach to Improving Decision Making in Wetland Restoration and Creation. Environmental Research Laboratory, Corvallis, Oregon.

    Google Scholar 

  • Langis, R., M. Zalejko & J.B. Zedler, 1991. Nitrogen assessments in a constructed and a natural saltmarsh of San Diego Bay. Ecol. Appl. 1: 40–51.

    Google Scholar 

  • Lawton, J.H., 1996. Patterns in ecology. Oikos 75: 145–147.

    Google Scholar 

  • Legendre, P. & M.J. Anderson, 1999. Distance-based redundancy analysis: testing multi-species responses in multi-factorial ecological experiments. Ecol. Monogr. 69: 1–24.

    Article  Google Scholar 

  • McDonald, L.L. & W.P. Erickson, 1994. Testing for bio-equivalence in field studies: has a disturbed site been adequately reclaimed? In: D.J. Fletcher & B.F. Manly (eds), Statistics and Environmental Monitoring. University of Otago Press, Dunedin: 183–197.

    Google Scholar 

  • Mitsch, W.J. & R.F. Wilson, 1996. Improving the success of wetland creation and restoration with know-how, time, and self-design. Ecol. Appl. 6: 77–83.

    Google Scholar 

  • Morrisey, D.J., L. Howitt, A.J. Underwood & J.S. Stark, 1992a. Spatial variation in soft-sediment benthos. Mar. Ecol. Progr. Ser. 81: 197–204.

    Google Scholar 

  • Morrisey, D.J., A.J. Underwood, L. Howitt & J.S. Stark, 1992b. Temporal variation in soft-sediment benthos. J. Exp. Mar. Biol. Ecol. 164: 233–245.

    Article  Google Scholar 

  • Moy, L.D. & L.A. Levin, 1991. Are Spartinamarshes a replaceable resource? A functional approach to evaluation of marsh creation efforts. Estuaries 14: 1–16.

    Article  Google Scholar 

  • Naeem, S., 1998. Species redundancy and ecosystem reliability. Conserv. Biol. 12: 39–45.

    Article  Google Scholar 

  • Niemi, G.J., P. DeVore, N. Detenbeck, D. Taylor, A. Lima, J. Pastor, J.D. Yount & R.J. Naiman, 1990. Overview of case studies on recovery of aquatic systems from disturbance. Environ. Manage. 14: 571–587.

    Article  Google Scholar 

  • Oliver, I. & A.J. Beattie, 1996. Designing a cost-effective invertebrate survey: a test of methods for rapid assessment of biodiversity. Ecol. Appl. 6: 594–607.

    Google Scholar 

  • Olsgard, F., P.J. Somerfield & M.R. Carr, 1997. Relationships between taxonomic resolution and data transformations in analyses of a macrobenthic community along an established pollution gradient. Mar. Ecol. Progr. Ser. 149: 173–181.

    Google Scholar 

  • Osgood, D.T. & J.C. Zieman, 1993. Factors controlling aboveground Spartina alterniflora(smooth cordgrass) tissue element composition and production in different age barrier island marshes. Estuaries 16: 815–826.

    Article  CAS  Google Scholar 

  • Otway, N.M., 1995. Assessing impacts of deepwater sewage disposal: a case study from New South Wales, Australia. Mar. Pollut. Bull. 31: 347–354.

    Article  CAS  Google Scholar 

  • Pickett, S.T.A. & P.S. White, 1985. The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, Orlando.

    Google Scholar 

  • Piehler, M.F., C.A. Currin, R. Cassanova & H.W. Paerl, 1998. Development & N-2-fixing activity of the benthic microbial community in transplanted Spartina alternifloramarshes in North Carolina. Restor. Ecol. 6: 290–296.

    Article  Google Scholar 

  • Race, M.S., 1985. Critique of present wetlands mitigation policies in the United States based on an analysis of past restoration projects in San Francisco Bay. Environ. Manage. 9: 71–82.

    Article  Google Scholar 

  • Race, M.S. & M.S. Fonesca, 1996. Fixing compensatory mitigation: what will it take? Ecol. Appl. 6: 94–101.

    Google Scholar 

  • Resh, V.H., A.V. Brown, A.P. Covich, M.E. Gurtz, H.W. Li, G.W. Minshall, S.R. Reice, A.L. Sheldon, J.B. Wallace & R.C. Wissmar, 1988. The role of disturbance in stream ecology. J. N. Amer. Benthol. Soc. 7: 433–455.

    Article  Google Scholar 

  • Roberts, D.E., A. Smith, P. Ajani & A.R. Davis, 1998. Rapid changes in encrusting marine assemblages exposed to anthropogenic point-source pollution: a ‘Beyond-BACI’ approach. Mar. Ecol. Progr. Ser. 163: 213–224.

    Google Scholar 

  • Roughgarden, J., S. Gaines & H. Possingham, 1988. Recruitment dynamics in complex life cycles. Science 214: 1460–1466.

    Google Scholar 

  • Seneca, E.D., S.W. Broome, W.W. Woodhouse & L.M. Cammen, 1976. Establishing Spartina alternifloramarsh in North Carolina. Environ. Conserv. 3: 185–188.

    Article  Google Scholar 

  • Simenstad, C.A. & R.M. Thom, 1996. Functional equivalency trajectories of the restored Gog-Le-Hi-Te estuarine wetland. Ecol. Appl. 6: 38–56.

    Google Scholar 

  • Smith, S.D.A. & R.D. Simpson, 1993. Effects of pollution on holdfast macrofauna of the kelp Ecklonia radiata: discrimination at different taxonomic levels. Mar. Ecol. Progr. Ser. 96: 199–208.

    Google Scholar 

  • Somerfield, P.J. & K.R. Clarke, 1995. Taxonomic levels, in marine community studies, revisited. Mar. Ecol. Progr. Ser. 127: 113–119.

    Google Scholar 

  • Somerfield, P.J., F. Olsgard & M.R. Carr, 1997. A further examination of two new taxonomic distinctness measures. Mar. Ecol. Progr. Ser. 154: 303–306.

    Google Scholar 

  • Sousa, W.P., 1984. Intertidal mosaics: patch size, propagule availability, and spatially variable patterns of succession. Ecology 65: 1918–1935.

    Article  Google Scholar 

  • Stebbing, A.R.D., V. Dethlefson & M. Carr (eds), 1992. Biological effects of contaminants in the North Sea: results of the ICES/IOC Bremerhaven workshop. Mar. Ecol. Progr. Ser. 91: 1–361.

  • Stewart-Oaten, A., W.M. Murdoch & K.R. Parker, 1986. Environmental impact assessment: ‘pseudoreplication’ in time. Ecology 67: 929–940.

    Article  Google Scholar 

  • Thompson, S.P., H.W. Paerl & C.G. Malia, 1995. Seasonal patterns of nitrification and denitrification in a natural & a restored salt marsh. Estuaries 18: 399–408.

    Article  CAS  Google Scholar 

  • Thrush, S.F., R.D. Pridmore & J.E. Hewitt, 1994. Impacts on softsediment macrofauna: the effects of spatial variation on temporal trends. Ecol. Appl. 41: 31–41.

    Google Scholar 

  • Tilman, D., 1996. Biodiversity: population versus ecosystem stability. Ecology 77: 350–363.

    Article  Google Scholar 

  • Underwood, A.J., 1981. Techniques of analysis of variance in experimental marine biology and ecology. Ann. Rev. Oceanogr. Mar. Biol. 19: 513–603.

    Google Scholar 

  • Underwood, A.J., 1991. Beyond BACI: experimental designs for detecting human environmental impacts on temporal variations in natural populations. Aust. J. Mar. Freshwat. Res. 42: 569–587.

    Article  Google Scholar 

  • Underwood, A.J., 1992. Beyond BACI: the detection of environmental impacts on populations in the real, but variable, world. J. Exp. Mar. Biol. Ecol. 161: 145–178.

    Article  Google Scholar 

  • Underwood, A.J., 1993. The mechanics of spatially replicated sampling programmes to detect environmental impacts in a variable world. Aust. J. Ecol. 18: 99–116.

    Google Scholar 

  • Underwood, A.J., 1994a. On beyond BACI: sampling designs that might reliably detect environmental disturbances. Ecol. Appl. 4: 3–15.

    Google Scholar 

  • Underwood, A.J., 1994b. Spatial & temporal problems with monitoring. In: P. Calow & G.E. Petts (eds), The Rivers Handbook. Volume 2. Blackwell Scientific Publications: 101–123.

  • Underwood, A.J., 1996. Detection, interpretation, prediction and management of environmental disturbances: some roles for experimental marine ecology. J. Exp. Mar. Biol. Ecol. 200: 1–27.

    Article  Google Scholar 

  • Underwood, A.J., 1997. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge University Press, Cambridge.

    Google Scholar 

  • Underwood, A.J. & M.G. Chapman, 1996a. Scales of spatial patterns of distribution of intertidal invertebrates. Oecologia (Berl.) 107: 212–224.

    Article  Google Scholar 

  • Underwood, A.J. & M.G. Chapman, 1996b. Subtidal assemblages on rocky reefs at a cliff-face sewage outfall (North Head, Sydney, Australia): what happened when the outfall was turned off? Mar. Pollut. Bull. 33: 293–302.

    Article  CAS  Google Scholar 

  • Underwood, A.J. & M.G. Chapman, 1998. A method for analysing spatial scales in variation in composition of assemblages. Oecologia (Berl.) 117: 570–578.

    Article  Google Scholar 

  • Underwood, A.J. & M.G. Chapman, 1999. Conservation of coastal organisms depends on scientific realism, not community ‘monitoring’. Australian Zoologist (in press).

  • Underwood, A.J., E.J. Denley & M.J. Moran, 1983. Experimental analyses of the structure and dynamics of the midshore intertidal communities in New South Wales. Oecologia (Berl.) 56: 202–219.

    Article  Google Scholar 

  • Underwood, A.J. & P.G. Fairweather, 1989. Supply-side ecology and benthic marine assemblages. TREE 4: 16–20.

    Google Scholar 

  • Vivian Smith, G., 1997. Microtopographic heterogeneity and floristic diversity in experimental wetland communities. J. Ecol. 85: 71–82.

    Article  Google Scholar 

  • Warwick, R.M., 1986. A new method for detecting pollution effects on marine macrobenthic communities. Mar. Biol. 92: 557–562.

    Article  Google Scholar 

  • Warwick, R.M., 1988. Analysis of community attributes of the macrobenthos of Frierfjord/Langesundsfjord at taxonomic levels higher than species. Mar. Ecol. Progr. Ser. 46: 167–170.

    Google Scholar 

  • Warwick, R.M., M.R. Carr, K.R. Clarke, J.M. Gee & R.H. Green, 1988. A mesocosm experiment on the effects of hydrocarbon and copper pollution on a sublittoral soft-sediment meiobenthic community. Mar. Ecol. Progr. Ser. 46: 181–191.

    CAS  Google Scholar 

  • Warwick, R.M. & K.R. Clarke, 1993. Increased variability as a symptom of stress in marine communities. J. Exp. Mar. Biol. Ecol. 172: 215–226.

    Article  Google Scholar 

  • Warwick, R.M. & K.R. Clarke, 1994. Relearning the ABC: taxonomic changes and abundance/biomass relationships in disturbed benthic communities. Mar. Biol. 118: 739–744.

    Article  Google Scholar 

  • Warwick, R.M. & K.R. Clarke, 1995. New ‘biodiversity’ measures reveal a decrease in taxonomic distinctness with increasing stress. Mar. Ecol. Progr. Ser. 129: 301–305.

    Google Scholar 

  • Warwick, R.M., K.R. Clarke & Suharsono, 1990. A statistical analysis of coral community responses to the 1982–1983 El Niño in the Thousand Islands, Indonesia. Coral Reefs 8: 171–179.

    Article  Google Scholar 

  • Zedler, J.B., 1996a. Ecological issues in wetland mitigation: an introduction to the forum. Ecol. Appl. 6: 33–37.

    Google Scholar 

  • Zedler, J.B., 1996b. Coastal mitigation in southern California: the need for a regional restoration strategy. Ecol. Appl. 6: 84–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chapman, M. Improving sampling designs for measuring restoration in aquatic habitats. Journal of Aquatic Ecosystem Stress and Recovery 6, 235–251 (1998). https://doi.org/10.1023/A:1009987403481

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009987403481

Navigation