Skip to main content
Log in

GLM versus CCA spatial modeling of plant species distribution

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Despite the variety of statistical methods available for static modeling of plant distribution, few studies directly compare methods on a common data set. In this paper, the predictive power of Generalized Linear Models (GLM) versus Canonical Correspondence Analysis (CCA) models of plant distribution in the Spring Mountains of Nevada, USA, are compared. Results show that GLM models give better predictions than CCA models because a species-specific subset of explanatory variables can be selected in GLM, while in CCA, all species are modeled using the same set of composite environmental variables (axes). Although both techniques can be readily ported to a Geographical Information System (GIS), CCA models are more readily implemented for many species at once. Predictions from both techniques rank the species models in the same order of quality; i.e. a species whose distribution is well modeled by GLM is also well modeled by CCA and vice-versa. In both cases, species for which model predictions have the poorest accuracy are either disturbance or fire related, or species for which too few observations were available to calibrate and evaluate the model. Each technique has its advantages and drawbacks. In general GLM will provide better species specific-models, but CCA will provide a broader overview of multiple species, diversity, and plant communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Austin, M. P. & Smith T. M. 1989. A new model for the continuum concept. Vegetatio 83: 35-47.

    Google Scholar 

  • Austin, M. P., Nicholls, A. O., Doherty, M. D. & Meyers, J. A. 1994. Determining species response functions to an environmental gradient by means of a Beta-function. J. Veg. Sci. 5: 215-228

    Google Scholar 

  • Brzeziecki, B., Kienast, F. & Wildi, O. 1993. A simulated map of the potential natural forest vegetation of Switzerland. J. Veg. Sci. 4: 499-508.

    Google Scholar 

  • Burke, I. C., Reiners, W. A., & Olson, R. K. 1989. Topographic control of vegetation in a mountain big sagebrush steppe. Vegetatio 84: 77-86.

    Google Scholar 

  • Cohen, J. 1960. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20: 37-46.

    Google Scholar 

  • Ferrer-Castán, D., Calvo, J. F., Esteve-Selma, M. A., Torres-Martinez, A. & Ramirez-Diaz, L. 1995. On the use of three performance measures for fitting species response curves. J. Veg. Sci. 6: 57-62.

    Google Scholar 

  • Fitzgerald, R. W. & Lees, B.G. 1992. The application of Neural Networks to the floristic classification of remote sensing and GIS data in complex terrain (I). Vol. 3, Pp. 2-10. In: Proceedings of the 6th Australian Remote Sensing Conference, Wellington, N.Z., November 1992.

    Google Scholar 

  • Frank, T. D. 1988. Mapping Dominant Vegetation Communities in the Colorado Rocky Mountain Front Range with Landsat Thematic mapper and Digital Terrain Data. Photogr. Eng. 54: 1727-1734.

    Google Scholar 

  • Franklin, J. 1995. Predictive vegetation mapping: geographic modeling of biospatial patterns in relation to environmental gradients. Prog. Phys. Geog. 19: 474-499.

    Google Scholar 

  • Gauch, H.G. 1982. Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gottfried, M., Pauli, H. & Grabherr, G. 1998. Predictions of vegetation patterns at the limits of plant life: a new view of the alpine-nival ecotone. Arctic Alpine Res. 30: 207-221.

    Google Scholar 

  • Greenacre, M. J. 1984. Theory and Applications of Correspondence Analysis. Academic Press, London.

    Google Scholar 

  • Guisan, A. 1997. Distribution de taxons végétaux dans un environnement alpin: Application de modélisations statistiques dans un système d'information géographique. Thèse de doctorat présenté à la Faculté des Sciences de l'Université de Genève (PhD Dissertation, University of Geneva). No 2892. 186 pp. C annexes and maps.

  • Guisan, A., Theurillat, J.-P. & Kienast, F. 1998. Using static modeling to predict potential distributions of species in an alpine environment. J. Veg. Sci. 9: 65-74.

    Google Scholar 

  • Heikkinen, R. K. 1996. Predicting patterns of vascular plant species richness with composite variables: a meso-scale study in Finnish Lapland. Vegetatio 126: 151-165.

    Google Scholar 

  • Hetrick, W. A., Rich, P. M, Barnes, F. J., & Weiss, S. B. 1993. GIS-based solar radiation flux models. Pp. 132-143. In: American Society for Photogrammetery and Remote Sensing Technical Papers. Vol. 3, GIS photogrammetry, and modeling. Hill, M. O. 1974. Correspondence analysis: a neglected multivariate method. Appl. Stat. 23: 340-354.

    Google Scholar 

  • Hill, M. O. 1991. Patterns of species distribution in Britain elucidated by canonical correspondence analysis. J. Biog. 18: 247-255.

    Google Scholar 

  • Huisman, J., Olff, H. & Fresco, L. M. F. 1993. A hierarchical set of models for species response analysis. J. Veg. Sci. 4: 37-46.

    Google Scholar 

  • Hutchinson, M. F. & Bischof, R. J. 1983. A new method for estimating the spatial distribution of mean seasonal and annual rainfall applied to Hunter Valley, New South Wales. Austral. Meteorol. Mag. 31: 179-184.

    Google Scholar 

  • Jongman, R. H. G., Ter Braak, C. J. F. & van Tongeren, O. F. R. 1995. Data Analysis in Community and Landscape Ecology. Cambridge University Press, Cambridge UK.

    Google Scholar 

  • Korzukhin, M. D., Ter-Mikaelian, M. & Wagner, R. G. 1996. Process versus empirical models: which approach for forest ecosystem managementčan. J. For. Res. 26: 879-887.

    Google Scholar 

  • Lanner, R. M. 1983. Trees of the Great Basin: A Natural History. University of Nevada Press, Reno, NV.

    Google Scholar 

  • Lenihan J. M. 1993. Ecological responses surfaces for north American tree species and their use in forest classification. J. Veg. Sci. 4: 667-680.

    Google Scholar 

  • McCullagh, P. & Nelder, J. A. 1983. Generalized Linear Models. Monographs on Statistics and Applied Probability, Chapman and Hall, London.

  • Monserud, R. A. & Leemans, R. 1992. Comparing global vegetation maps with the Kappa statistic. Ecol. Modelling 62: 275-293.

    Google Scholar 

  • Nachlinger, J. & G. A. Reese. 1996. Plant community classification of the Spring Mountains National Recreation Area, Clark and Nye Counties, Nevada. Unpublished report on file with Toiyabe National Forest, Spring Mountains National Recreation Area, Las Vegas, NV. 104 pp.+ appendix.

  • Nicholls, A. O. 1989. How to make biological surveys go further with generalized linear model. Biol. Conserv. 50: 51-75.

    Google Scholar 

  • Oksanen, J. 1997.Why the beta-function cannot be used to estimate skweness of species responses. J. Veg. Sci. 8: 147-152.

    Google Scholar 

  • Palmer, M. 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74: 2215-2230.

    Google Scholar 

  • Saetersdal, M. & Birks, H. J. B. 1997. A comparative ecological study of Norwegian mountain plants in relation to possible future climatic change. J. Biog. 24: 127-152.

    Google Scholar 

  • Shao, G. & Halpin, P. N. 1995. Climatic controls of eastern North American coastal tree and shrub distributions. J. Biog. 22: 1083-1089.

    Google Scholar 

  • Skidmore, A. K., Gauld, A. & Walker, P. 1996. Classification of Kangaroo habitat distribution using three GIS models. Int. J. Geographical Information System 10: 441-454.

    Google Scholar 

  • Ter Braak C. J. F. 1987. The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69: 69-77.

    Google Scholar 

  • Ter Braak, C. J. F. 1988. CANOCO: an extension of DECORANA to analyze species-environment relationships Vegetatio 75: 159-160.

    Google Scholar 

  • Ter Braak, C. J. F. & Smilauer, P. 1998. CANOCO Reference Manual and User's Guide to CANOCO for Windows. Software for Canonical Community Ordination (version 4). Centre for Biometry Wageningen (Wageningen, NL) and Microcomputer Power, Ithaca NY, USA, 352 pp.

  • Walker, P. A. & Moore, D. M. 1988. SIMPLE: an inductive modeling and mapping tool for spatially-oriented data. Int. J. Geog. Inf. System 2: 347-363.

    Google Scholar 

  • Walker, P. A. & Cocks, D. 1991. HABITAT: a procedure for modeling a disjoint environmental envelope for a plant or animal species. Global Ecol. Biog. Letters 1: 108-118.

    Google Scholar 

  • Walker, R. E., Stoms, D. M., Davis, F. W. & van Wagtendonk, J. 1992. Modeling potential natural vegetation from a topographic gradient in the southern Sierra Nevada, California. Pp. 794-803. In: Proceedings GIS/LIS-92. Bethesda, MD: ASPRS. Weisberg, S. 1980. Applied Linear Regression. John Wiley and Sons, New York.

    Google Scholar 

  • Yee, T. W. & Mitchell, N. D. 1991. Generalized additive models in plant ecology. J. Veg. Sci. 2: 587-602.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guisan, A., Weiss, S.B. & Weiss, A.D. GLM versus CCA spatial modeling of plant species distribution. Plant Ecology 143, 107–122 (1999). https://doi.org/10.1023/A:1009841519580

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009841519580

Navigation