, Volume 5, Issue 4, pp 337-355

Estimation of Pore Water Concentrations from DGT Profiles: A Modelling Approach

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The technique of Diffusional Gradients in Thin-films (DGT) can be used in situ to obtain high resolution profiles of trace-metals in sediment pore waters. Substances sampled by DGT continuously diffuse through a ‘diffusion layer’ comprising a hydrogel prior to being immobilized by binding to a resin layer. DGT therefore measures a time averaged flux from the pore water to the resin. Interpretation of this flux as pore water concentration is problematic for two reasons. Firstly, the pore water concentration adjacent to the sampler may become depleted by the DGT induced flux. Secondly, if there are steep vertical chemical gradients in the pore waters, they may relax by diffusion along the gradient within the gel layer. The extent of relaxation depends on the diffusion coefficient, gradient steepness, and diffusion layer thickness. Two dimensional (2D) numerical models of DGT deployments in horizontally uniform sediments were used to investigate to what extent DGT measured profiles accurately reproduced (a) the shape of pore water concentration profiles, and (b) the magnitude of pore water concentrations. A method is developed which translates high resolution DGT measured flux profiles into reliable estimates of pore water concentrations. Linear relationships are given which estimate the minimum DGT measured peak width (as a function of diffusion layer thickness) that ensures accurate reproduction of the shape and the magnitude of peaks in pore water concentrations. Peaks in DGT profiles obtained from assemblies with diffusion layer thicknesses of 0.3 mm (0.5 mm) should be at least 1.2 mm (1.8 mm) wide for their shape to reflect accurately their true shape in the pore water, and at least 1.7 mm (2.7 mm) wide to ensure the peak concentration is accurately estimated.