Skip to main content
Log in

Growth and Chemical Composition of Spirulina Maxima and Spirulina Platensis Biomass at Different Temperatures

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The influence of temperature on growth and biomass composition of two species of Spirulina, S. maxima and S. platensis used for food was studied. A 4L fermenter with temperature and agitation control was used to cultivate both species. Under continuous light, maximum cell production of 2.4 g l−1 was verified for both cultures studied at temperatures above 25 °C: S. maxima (30 °C and 35 °C) and S. platensis (25 °C and 30 °C). An accentuated lag phase was observed for all cultures at lower temperatures (15–20 °C), and a maximum biomass production of 1.5 g l−1 was achieved. It was also observed that an increase of temperature caused a marked decrease in protein content, while carbohydrate synthesis was stimulated. The concentration of γ-linolenic acid varied from 11–16% for S. maxima and from 12–14% for S. platensis, at the optimum growth temperatures. Greater culture volumes were also studied in order to compare the performance of glass and plastic containers. At optimum growth temperature, S. maxima produced the same cell growth and similar final biomass composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bombart, P., Brouers, M., Dujardin, E. and Sironval, C. 1993. Spirulina cultures in temperate climates. In: Spirulina Algae of Life, F. Doumenge, H. Durand-Chastel and A. Toulemont (eds), pp. 97–102. Bulletin de l'Instituit océanographique, Spécial. 12, Monaco.

  • Borowitzka, M.A. and Borowitzka, L.J. 1988. Dunaliella. In: Micro-algal Biotechnology, M.A. Borowitzka and L.J. Borowitzka (eds), pp. 27–58. Cambridge University Press, Cambridge.

    Google Scholar 

  • Ciferri, O. 1983. Spirulina the edible microorganism. Microbiology Ver. 47, 551–578.

    Google Scholar 

  • Dubois, M., Gilles, K.A., Hamilton, J.K., Rebers, P.A. and Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28, 350–355.

    Google Scholar 

  • Ferraz, C.A.M. and Aquarone, E. 1985. Utilização se sub-produtos da indústna alcooleira na obtenção de biomassa de Spirulina maxima. Parte I — Emprego de anidrido carbônico, Revista de Microbiologia 16, 179–187.

    Google Scholar 

  • Franke, H., Springer, M., Pulz, O., Tietz, U. and Mueller, U. 1994. Polyunsaturated fatty acids from microalgae, International Food Ingredients 4, 41–45.

    Google Scholar 

  • Goldman, J.C. 1979. Outdoor algal mass cultures. II. Photosynthetic yield limitations, Water Research 13, 119–136.

    Google Scholar 

  • Hartman, L. and Lago, R.C.A. 1983. Rapid preparation of fatty acid methyl esters from lipids, Laboratory Practice 22, 475–479.

    Google Scholar 

  • Hudson, B.J.F. and Karis, I.G. 1974. The lipids of the alga Spirulina, Journal of Science, Food and Agriculture 25, 759–763.

    Google Scholar 

  • Hungria, M. and Araújo, R.S. 1994. Manual de métodos de microbiologia agrícola. EMBRAPA. Serviço de Produção e Informação. Brasília, DF.

    Google Scholar 

  • Instituto Adolfo Lutz 1985. Normas Analíticas do Instituto Adolfo Lutz. São Paulo-5P. V.1. 3rd edn.

  • Mahajan, G. and Kamat, M. 1995. Gamma linolenic acid production from Spirulina platensis. Applied Microbiology Biotechnology 43, 466–469.

    Google Scholar 

  • Ogawa, T., Kozasu, H. and Terui, G. 1971. Studies on the growth of Spirulina platensis II. Growth kinetic of an autotrophic culture. Journal of Fermentation Technology 50, 143–149.

    Google Scholar 

  • Quoc, K.P. and Dubacq, J.P. 1997. Effect of growth temperature on the biosynthesis of eukaryotic lipid molecular species by the cyanobacterium Spirulina platensis, Biochimica et Biophysica Acta. 1346, 237–246.

    Google Scholar 

  • Richmond, A. 1988. Spirulina. In: Micro-algal Biotechnology, M.A. Borowitzka and L.J. Borowitzka (eds), pp. 85–121. Cambridge University Press, Cambridge.

    Google Scholar 

  • Richmond, A. 1992. Mass culture of cyanobacterium. In: Photobynthetic Prokaryotes, N.H. Mann and N.G. Carr (eds), pp. 181–209. Plenum Press, New York.

    Google Scholar 

  • Richmond, A., Lichtenberg, E., Stahl, B. and Vonshak, A. 1990. Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways, Journal of Applied Phycology 2, 195–206.

    Google Scholar 

  • Shubert, L.E. 1988. The use of Spirulina (Cyanophyceae) and Chlorella (Chlorophyceae) as food source for animals and humans. In: Progress in Phycological Research, F.E. Round and V.J. Chapman (eds), pp. 237–254. Biopress Ltd, ???.

  • Tanticharoen, M., Reungjitchachawali, M., Boonag, B., Vonktaveesuk, P., Vonshak, A. and Cohen, Z. 1994. Optimization of gamma-linolenic acid (GLA) production in Spirulina platensis. Journal of Applied Phycology 6, 295–300.

    Google Scholar 

  • Tomaselli, L., Giovannetti, L. and Torzillo, G. 1993. Physiology of stress response in Spirulina spp. In: Spirulina Algae of Life, F. Doumenge, H. Durand-Chastel and A. Toulemont (eds), pp. 65–75. Bulletin de l'Instituit océanographique, Spécial. 12, Monaco.

  • Tomaselli, L., Giovannetti, L., Sacchi, A. and Bocci, F. 1988. Effects of temperature on growth and biochemical composition in Spirulina platensis strain M2. In: Algal Biotecnology, T. Stadler, J. Mellion, M.C. Verdus, Y. Karamanos, H. Morvan and D. Christiaen (eds), pp. 303–314. Elsevier Applied Science, London.

    Google Scholar 

  • Tornabene, T.G., Bourne, T.F., Raziuddin, S. and Bem-Amotz, A. 1985. Lipid and lipopolysaccharide constituents of cyanobacterium Spirulina platensis (Cyanophyceae, Nostocales). Marine Ecology, Progress Series 22, 121–125.

    Google Scholar 

  • Vonshak, A. 1992. Microalgal biotechnology: is it an economical success?. In: Biotechnology: Economic and Social Aspects, E.J. Da Silva, C. Ratledge and A. Sasson (eds), pp. 70–80. Cambridge University Press, Cambridge.

    Google Scholar 

  • Vonshak, A. and Richmond, A. 1988. Mass production of the blue-green alga Spirulina: an overview. Biomass 15, 233–247.

    Google Scholar 

  • Vonshak, A., Boussiba, S., Abeliovich, A. and Richmond, A. 1983. Production of Spirulina biomass: maintenance of Monoalgal Culture Outdoors. Biotechnology and Bioengeneering 25, 341–349.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oliveira, M.d., Monteiro, M., Robbs, P. et al. Growth and Chemical Composition of Spirulina Maxima and Spirulina Platensis Biomass at Different Temperatures. Aquaculture International 7, 261–275 (1999). https://doi.org/10.1023/A:1009233230706

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009233230706

Navigation