Skip to main content
Log in

Modelling alkali promotion in heterogeneous catalysis: in situ electrochemical control of catalytic reactions

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Electron spectroscopic data and reactor measurements show that electrochemical promotion (EP) of thin film catalysts deposited on solid electrolyte supports is the result of spillover phenomena at the three‐phase boundary between the electrolyte, the catalyst and the gas phase. Ions from the electrolyte are discharged at the electrode/electrolyte interface and migrate to cover the catalyst surface whose properties are thereby strongly altered. The EP effect and the phenomena that underlie it are illustrated here by reference to the Na‐promoted catalytic reduction of NO by CO over copper. Electro‐pumping of Na from a β″‐alumina solid electrolyte to the catalyst surface results in large improvements in both activity and selectivity of the latter. Under reaction conditions, the alkali promoter is present as submonolayer amounts of NaNO3 on an oxidised Cu surface. The results indicate that Cu0 sites are not of significance and that the catalytically active surface is dominated by Cu+ and Cu2+ sites. They also show that Cu+ is the critically important site for NO adsorption and that EP is due to Na‐induced enhancement of the adsorption and dissociation of NO at Cu+ sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M.P. Kiskinova, Poisoning and Promotion in Catalysis Based on Surface Science Concepts and Experiments (Elsevier, Amsterdam, 1992).

    Google Scholar 

  2. J.W. Niemantsverdriet, Appl. Phys. A 61 (1995) 503.

    Google Scholar 

  3. S.J. Thomson, J. Chem. Soc., Faraday Trans. 83 (1987) 2001.

    Google Scholar 

  4. R.M. Ormerod and R.M. Lambert, in: Surface Reactions, Springer Series in Surface Science, Vol. 34, ed. R.J. Madix (Springer, Berlin, 1994) pp. 89–131.

    Google Scholar 

  5. A.F. Lee, C.J. Baddeley, C. Hardacre, R.M. Ormerod, R.M. Lambert, G. Schmid and H. West, J. Phys. Chem. 99 (1995) 6096.

    Article  CAS  Google Scholar 

  6. I.V. Yentekakis, A. Palermo, N.C. Filkin, M.S. Tikhov and R.M. Lambert, J. Phys. Chem. B 101 (1997) 3759.

    Article  CAS  Google Scholar 

  7. N.C. Filkin, M.S. Tikhov, A. Palermo and R.M. Lambert, J. Phys. Chem. A 103 (1999) 2680.

    Article  CAS  Google Scholar 

  8. I.V. Yentekakis, R.M. Lambert, M.S. Tikhov, M. Konsolakis and V. Kiousis, J. Catal. 176 (1998) 82.

    Article  CAS  Google Scholar 

  9. M. Konsolakis, A. Palermo, M. Tikhov, R.M. Lambert and Y.V. Yentekakis, Ionics 4 (1998) 148.

    Article  CAS  Google Scholar 

  10. M. Konsolakis, L. Nalbantian, N. McLeod, I.V. Yentekakis and R.M. Lambert, Appl. Catal. B (1999), in press.

  11. S. Tracey, A. Palermo, J.P. Holgado Vazquez and R.M. Lambert, J. Catal. 179 (1998) 231.

    Article  CAS  Google Scholar 

  12. S. Wodiunig, F. Bokeloh, J. Nicole and Ch. Comninellis, Electrochem. Solid State Lett. 2 (1999), in press.

  13. S. Bebelis and C.G. Vayenas, J. Catal. 118 (1989) 125.

    Article  CAS  Google Scholar 

  14. C.G. Vayenas, M. Jaksic, S. Bebelis and Neophytides, in: Modern Aspects of Electrochemistry, eds. O'M Bockris, B.F. Conway and E. White (Plenum, New York, 1995) pp. 57–202.

    Google Scholar 

  15. C.G. Vayenas and S.G. Neophytides, in: Catalysis, Vol. 12 (Roy. Soc. Chem., Cambridge, 1996) pp. 195–253.

    Google Scholar 

  16. M. Makri, C.G. Vayenas, S. Bebelis, K.H. Besocke and C. Cavalca, Surf. Sci. 369 (1996) 351.

    Article  CAS  Google Scholar 

  17. C. Pliangos, I.V. Yentekakis, X. Verykios and C.G. Vayenas, J. Catal. 154 (1995) 124.

    Article  CAS  Google Scholar 

  18. I.V. Yentekakis and S. Bebelis, J. Catal. 137 (1992) 278.

    Article  CAS  Google Scholar 

  19. Ch. Karavasilis, S. Bebelis and C.G. Vayenas, J. Catal. 160 (1994) 190.

    Article  Google Scholar 

  20. I.V. Yentekakis, G.D. Moggridge, C.G. Vayenas and R.M. Lambert, J. Catal. 146 (1994) 292.

    Article  CAS  Google Scholar 

  21. O.A. Marina, I.V. Yentekakis, C.G. Vayenas, A. Palermo and R.M. Lambert, J. Catal. 166 (1997) 218.

    Article  CAS  Google Scholar 

  22. R.M. Lambert, M. Tikhov, A. Palermo, I.V. Yentekakis and C.G. Vayenas, Ionics 5 (1995) 366.

    Article  Google Scholar 

  23. A. Palermo, R.M. Lambert, I.R. Harkness, I.V. Yentekakis, O. Marina and C.G. Vayenas, J. Catal. 161 (1996) 471.

    Article  CAS  Google Scholar 

  24. I.V. Yentekakis and C.G. Vayenas, J. Catal. 149 (1994) 238.

    Article  CAS  Google Scholar 

  25. T.I. Politova, V.A. Sobyanin and V.D. Belyaev, React. Kinet. Catal. Lett. 41 (1990) 321.

    Article  CAS  Google Scholar 

  26. M. Marwood and C.G. Vayenas, J. Catal. 178 (1998) 429.

    Article  CAS  Google Scholar 

  27. R.D. Armstrong and M. Todd, in: Solid State Electrochemistry, ed. P.G. Bruce (Cambridge University Press, Cambridge, 1995) p. 277.

    Google Scholar 

  28. F.J. Williams, M.S. Tikhov, A. Palermo and R.M. Lambert, in preparation.

  29. V.I. Parvulescu, P. Grange and B. Delmon, Catal. Today 46 (1998) 233.

    Article  Google Scholar 

  30. J.W. London and A.T. Bell, J. Catal. 31 (1973) 96.

    Article  CAS  Google Scholar 

  31. F.H.M. Dekker, S. Kraneveld, A. Bliek, F. Kapteijn and J.A. Moulijn, J. Catal. 170 (1997) 168.

    Article  CAS  Google Scholar 

  32. M. Fernandez-Garcia, C. Marquez Alvarez, I. Rodriguez-Ramos, A. Guerrero-Ruiz and G.L. Haller, J. Phys. Chem. 99 (1995) 16380.

    Article  CAS  Google Scholar 

  33. A. Palermo, R.M. Lambert, I.R. Harkness, I.V. Yentekakis, O. Marina and C.G. Vayenas, J. Catal. 161 (1996) 471.

    Article  CAS  Google Scholar 

  34. N.D. Lang, S. Holloway and J.K. Norskov, Surf. Sci. 150 (1985) 24.

    Article  CAS  Google Scholar 

  35. F. Parmigiani, G. Pachioni, F. Illas and P.S. Bagus, J. Electron Spectrosc. Relat. Phenom. 59 (1992) 255.

    Article  CAS  Google Scholar 

  36. H.C. Allen, J.M. Laux, R. Vogt, B.J. Finlayson-Pitts and J.C. Hemminger, J. Phys. Chem. 100 (1996) 6371.

    Article  CAS  Google Scholar 

  37. J.J. Yeh and I. Lindau, Atomic Data and Nuclear Data Tables, 32 (1985) p. 1.

    Article  CAS  Google Scholar 

  38. C.D. Wagner, in: Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, eds. D. Briggs and M.P. Seah (Wiley, New York, 1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambert, R.M., Williams, F., Palermo, A. et al. Modelling alkali promotion in heterogeneous catalysis: in situ electrochemical control of catalytic reactions. Topics in Catalysis 13, 91–98 (2000). https://doi.org/10.1023/A:1009076720641

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009076720641

Navigation