Skip to main content
Log in

Frequency Change Detection in Human Auditory Cortex

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We offer a model of how human cortex detects changes in the auditory environment. Auditory change detection has recently been the object of intense investigation via the mismatch negativity (MMN). MMN is a preattentive response to sudden changes in stimulation, measured noninvasively in the electroencephalogram (EEG) and the magnetoencephalogram (MEG). It is elicited in the oddball paradigm, where infrequent deviant tones intersperse a series of repetitive standard tones. However, little apart from the participation of tonotopically organized auditory cortex is known about the neural mechanisms underlying change detection and the MMN. In the present study, we investigate how poststimulus inhibition might account for MMN and compare the effects of adaptation with those of lateral inhibition in a model describing tonotopically organized cortex. To test the predictions of our model, we performed MEG and EEG measurements on human subjects and used both small- (<1/3 octave) and large- (>5 octaves) frequency differences between the standard and deviant tones. The experimental results bear out the prediction that MMN is due to both adaptation and lateral inhibition. Finally, we suggest that MMN might serve as a probe of what stimulus features are mapped by human auditory cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aitkin LM (1990) The Auditory Cortex: Structural and Functional Bases of Auditory Perception. Chapman and Hall, London.

    Google Scholar 

  • Aitkin LM, Merzenich MM, Irvine DRF, Clarey JC, Nelson JE (1986) Frequency representation in auditory cortex of the common marmoset (Callithrix jacchus jacchus). J. Comp. Neurol. 252:175–185.

    Google Scholar 

  • Alho K (1995) Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear & Hearing 16:38–51.

    Google Scholar 

  • Alho K, Huotilainen M, Tiitinen H, Ilmoniemi RJ, Knuutila J, Nääatänen R (1993) Memory-related processing of complex sound patterns in human auditory cortex: An MEG study. NeuroReport 4:391–394.

    Google Scholar 

  • Arezzo JC, Vaughan Jr HG, Kraut MA, Steinschneider M, Legatt AD (1986) Intracranial generators of event-related potentials in the monkey. Evoked Potentials. Liss. pp. 174–189.

  • Bertrand O, Perrin F, Echallier J, Pernier J (1988) Topography and model analysis of auditory evoked potentials: Tonotopic aspects. In: G Pfurtscheller, FH Lopes da Silva, eds. Functional Brain Imaging. Hans Huber, Toronto. pp. 75–82.

    Google Scholar 

  • Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neurosci. 20(2):365–383.

    Google Scholar 

  • Brugge JF (1982) Auditory cortical areas in primates. In: CN Woolsey, ed. Cortical Sensory Organization. Vol. 3. Multiple Auditory Areas. Humana, Clifton, NJ. pp. 59–70.

    Google Scholar 

  • Connors BW, Gutnick MJ, Prince DA (1982) Electrophysiological properties of neocortical neurons in vitro. J. Neurophysiol. 48:1302–1320.

    Google Scholar 

  • Connors BW, Malenka RC, Silva LR (1988) Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. J. Physiol. (London) 406:443–468.

    Google Scholar 

  • Cowan N, Winkler I, Teder W, Nääatänen R (1993) Memory prerequisites of mismatch negativity in the auditory event-related potential (ERP). J. Experi. Psychol.: Learning, Memory & Cognition 19(4):909–921.

    Google Scholar 

  • Csépe V, Karmos G, Molnár M (1987) Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat-animal model of mismatch negativity. Electroencephalography & Clin. Neurophysiol. 66:571–578.

    Google Scholar 

  • Csépe V, Pantev C, Hoke M, Hampson S, Ross B (1992) Evoked magnetic responses of the human auditory cortex to minor pitch changes: Localization of the mismatch field. Electroencephalography & Clin. Neurophysiol. 84:538–548.

    Google Scholar 

  • Depireux DA, Simon JZ, Shamma SA (1997) Response-field dynamics in the auditory pathway. Sixth Annual Computational Neuroscience Meeting, Big Sky, Montana.

  • Douglas RJ, Koch C, Mahowald M, Martin KAC, Suarez HH (1995) Recurrent excitation in neocortical circuits. Nature 269:981–985.

    Google Scholar 

  • Douglas RJ, Martin KAC (1990) Neocortex. In: GM Sheperd, ed. The Synaptic Organization of the Brain. Oxford University Press, Oxford. pp. 389–438.

    Google Scholar 

  • Douglas RJ, Martin KAC (1991) A functional microcircuit for cat visual cortex. J. Physiol. 440:735–769.

    Google Scholar 

  • Eggermont JJ (1991) Rate and synchronization measures of periodicity coding in cat primary auditory cortex. Hearing Res. 56:153–167.

    Google Scholar 

  • Elberling C, Bak C, Kofoed B, Lebech J, Saermark K(1982) Auditory magnetic fields: Source location and "tonotopic organization" in the right hemisphere of the human brain. Scand. Audiol. 11:61–65.

    Google Scholar 

  • Ford JM, Hillyard SA (1981) Event related potentials, ERPs, to interruptions of steady rhythm. Psychophysiol. 18:322–330.

    Google Scholar 

  • Giard MH, Lavikainen J, Reinikainen K, Perrin F, Bertrand O, Pernier J, Nääatänen R (1995) Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: An event-related potential and dipole-model analysis. J. Cognitive Neurosci. 7(2):133–143.

    Google Scholar 

  • Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in processing of auditory stimulus deviance: A topographic event-related potential study. Psychophysiol. 27:627–640.

    Google Scholar 

  • Halgren E, Baudena P, Clarke JM, Heit G, Liegeois C, Chauvel P, Musolino A (1995) Intracerebral potentials to rare target and distractor auditory and visual stimuli: I. Superior temporal plane and parietal lobe. Electroencephalography & Clin. Neurophysiol. 94:191–220.

    Google Scholar 

  • Hämäläinen M, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography: Theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev. of Modern Physics 65:413–497.

    Google Scholar 

  • Hari R, Hämäläinen M, Ilmoniemi RJ, Kaukoranta E, Reinikainen K, Salminen J, Alho K, Nääatänen R, Sams M (1984) Responses of the primary auditory cortex to pitch changes in a sequence of tone pips: Neuromagnetic recordings in man. Neurosci. Letters 50:127–132.

    Google Scholar 

  • Hari R, Joutsiniemi SL, Sarvas J (1988) Spatial resolution of neuromagnetic records: theoretical calculations in a spherical model. Electroencephalography & Clin. Neurophysiol. 71:64–72.

    Google Scholar 

  • He J, Hashikawa T, Ojima H, Kinouchi Y (1997) Temporal integration and duration tuning in the dorsal zone of cat auditory cortex. J. Neurosci. 17:2615–2625.

    Google Scholar 

  • Hose B, Langner G, Scheich H (1987) Topographic representation of periodicities in the forebrain of the mynah bird: One map for pitch and rhythm? Brain Res. 422:367–373.

    Google Scholar 

  • Howard III MA, Volkov IO, Abbas PJ, Damasio H, Ollendick MC, Granner MA (1996) A chronic microelectrode investigation of the tonotopic organization of human auditory cortex. Brain Res. 724:260–264.

    Google Scholar 

  • Imada T, Fukuda K, Kawakatsu M, Mashiko T, Okada K, Hayashi M, Aihara K, Kotani M (1995) Mismatch fields evoked by a rhythm passage. In: C Baumgartner, L Deecke, G Stroink, SJ Williamson, eds. Biomagnetism: Fundamental Research and Clinical Applications. Elsevier, Amsterdam. pp. 249–252.

    Google Scholar 

  • Javitt DC, Schroeder CE, Steinschneider M, Arezzo JC, Ritter W, Vaughan Jr HG(1995) Cognitive event-related potentials in human and non-human primates: Implications for the PCP/NMDAmodel of schizophrenia. In: G Karmos, M Molnar, V Csépe, I Czigler, JE Demedt, eds. Perspectives of Event-Related Potentials Research (EEG Supplement 44). Elsevier Science, Amsterdam. pp. 161–175.

    Google Scholar 

  • Javitt DC, Steinschneider M, Schroeder CE, Vaughan Jr HG, Arezzo JC (1994) Detection of stimulus deviance within primate primary auditory cortex: Intracortical mechanisms of mismatch negativity (MMN) generation. Brain Res. 667:192–200.

    Google Scholar 

  • Karmos G, Winkler I, Molnár M, Csépe V (1993) Animal model of middle latency auditory evoked responses: Intracortical generators of mismatch negativity. In: HJ Heinze, TF Munte, GR Mangun, eds. New Developments in Event-Related Potentials. Birkhauser, Boston, MA. pp. 95–102.

    Google Scholar 

  • Knuutila JET, Ahonen AI, Hämäläinen MS, Kajola MJ, Laine PP, Lounasmaa OV, Parkkonen LT, Simola JT, Tesche CD (1993) A 122-channel whole-cortex SQUID system for measuring brain' magnetic field. IEEE Trans. on Magnetism 29:3315–3320.

    Google Scholar 

  • Koch C, Rapp M, Segev I (1996) A brief history of time (constants). Cerebral Cortex 6:93–101.

    Google Scholar 

  • Kowalski N, Depireux DA, Shamma SA (1996) Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J. Neurophysiol. 76:3503–3523.

    Google Scholar 

  • Kraus N, McGee T, Littman T, Nicol T, King C (1994) Nonprimary auditory thalamic representation of acoustic change. J. Neurophysiol. 72:1270–1277.

    Google Scholar 

  • Kropotov JD, Nääatänen R, Sevostianov AV, Alho K, Reinikainen K, Kropotova OV (1995) Mismatch negativity to auditory stimulus change recorded directly from the human temporal cortex. Psychophysiol. 32:418–422.

    Google Scholar 

  • Lauter JL, Herschovitch P, Formby C, Raichle ME (1985) Tonotopic organization in the human auditory cortex revealed by positron emission tomography. Hearing Res. 20:199–205.

    Google Scholar 

  • Lu Z-L, Williamson SJ, Kaufman L (1992) Human auditory primary and association cortex have differing lifetimes for activation traces. Brain Res. 572:236–241.

    Google Scholar 

  • McCormick D (1990) Membrane properties and neurotransmitter actions. In: G Sheperd, ed. The Synaptic Organization of the Brain, 3rd ed. Oxford University Press, Oxford. pp. 32–66.

    Google Scholar 

  • Merzenich MM, Brugge JF (1973) Representation of the cochlear partition on the superior temporal plane of the macaque monkey. Brain Res. 50:275–296.

    Google Scholar 

  • Mitzdorf U (1985) Current source-density method and application in cat cerebral cortex: Investigation of evoked potentials and EEG phenomena. Physiol. Rev. 65:37–100.

    Google Scholar 

  • Nääatänen R (1984) In search of a short-duration memory trace of a stimulus in the human brain. In: L Pulkkinen, P Lyytinen, eds. Human Action and Personality: Essays in Honour of Martti Takala. University of Jyväskylä, Jyväskylä, Finland. pp. 29–43.

    Google Scholar 

  • Nääatänen R (1986) The orienting response theory: An integration of informational and energetical aspects of brain function. In: RGJ Hockey, AWK Gaillard, M Coles, eds. Adaptation to Stress and Task Demands: Energetical Aspects of Human Information Processing. Martinus Nijhoff, Dordrecht. pp. 91–111.

    Google Scholar 

  • Nääatänen R (1990) The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral & Brain Sci. 13:201–288.

    Google Scholar 

  • Nääatänen R (1992) Attention and Brain Function. Erlbaum, Hillsdale, NJ.

    Google Scholar 

  • Nääatänen R (1995) The mismatch negativity: A powerful tool for cognitive neuroscience. Ear & Hearing 16:6–18.

    Google Scholar 

  • Nääatänen R, Alho K (1995) Mismatch negativity: A unique measure of sensory processing in audition. Intl. J. Neurosci. 80:317–337.

    Google Scholar 

  • Nääatänen R, Gaillard AWK, Mäntysalo S (1978) Early selectiveattention effect on evoked potential reinterpreted. Acta Psychologica 42:313–329.

    Google Scholar 

  • Nääatänen R, Lehtokoski A, Lennes M, Cheour M, Huotilainen M, Iivonen A, Vainio M, Alku P, Ilmoniemi RJ Luuk A, Allik J, Sinkkonen J, Alho K (1997) Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature 385:432–434.

    Google Scholar 

  • Nälälatänen R, Paavilainen P, Alho K, Reinikainen K, Sams M (1989a) Do event-related potentials reveal the mechanism of the auditory sensory memory in the human brain? Neurosci. Letters 98:217–221.

    Google Scholar 

  • Nääatänen R, Paavilainen P, Reinikainen K (1989b) Do event-related potentials to infrequent decrements in duration of auditory stimuli demonstrate a memory trace in man? Neurosci. Letters 107:347–352.

    Google Scholar 

  • Nääatänen R, Picton TW (1987) The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiol. 24:375–425.

    Google Scholar 

  • Nääatänen R, Schröger E, Tervaniemi M, Karakas S, Paavilainen P (1993) Development of a memory trace for complex sound patterns in the human brain. NeuroReport 4:503–506.

    Google Scholar 

  • Nordby H, Roth WT, Pfefferbaum A (1988) Event-related potentials to time-deviant and pitch-deviant tones. Psychophysiol. 25:249–261.

    Google Scholar 

  • Paavilainen P, Saarinen J, Tervaniemi M, Nääatänen R (1995) Mismatch negativity to changes in abstract sound features during selective listening. J. Psychophysiol. 9:243–249.

    Google Scholar 

  • Pandya DN (1995) Anatomy of the auditory cortex. Rev. in Neurol. (Paris) 151(8–9):486–494.

    Google Scholar 

  • Pantev C, Hoke M, Lehnertz K, Lütkenhoner B, Anogianakis G, Wittkowski W (1988) Tonotopic organization of the human auditory cortex revealed by transient auditory evoked magnetic fields. Electroencephalography & Clin. Neurophysiol. 69:160–170.

    Google Scholar 

  • Pavlov IP (1927) Conditioned Reflexes. Clarendon Press, Oxford.

    Google Scholar 

  • Picton TW, Woods DL, Proulx GB (1978) Human auditory sustained potentials. I. The nature of the response. Electroencephalography & Clin. Neurophysiol. 45:186–197.

    Google Scholar 

  • Rhode WS, Greenberg S (1994) Lateral suppression and inhibition in the cochlear nucleus of the cat. J. Neurophysiol. 71:493–514.

    Google Scholar 

  • Roberts TPL, Poeppel D (1996) Latency of auditory evoked M100 as a function of tone frequency. NeuroReport 7:1138–1140.

    Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TPS (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244.

    Google Scholar 

  • Romani GL, Williamson SJ, Kaufman L (1982) Tonotopic organization of the human auditory cortex. Science 216:1339–1340.

    Google Scholar 

  • Sams M, Hämäläinen M, Antervo A, Kaukoranta E, Reinikainen K, Hari R (1985) Cerebral neuromagnetic responses evoked by short auditory stimuli. Electroencephalography & Clin. Neurophysiol. 61:254–266.

    Google Scholar 

  • Sams M, Kaukoranta E, Hämäläinen M, Nääatänen R (1991) Cortical activity elicited by changes in auditory stimuli: Different sources for magnetic N100m and mismatch responses. Psychophysiol. 28:21–29.

    Google Scholar 

  • Schreiner CE (1992) Functional organization of the auditory cortex: Maps and mechanisms. Current Opinion in Neurobiol. 2:516–521.

    Google Scholar 

  • Schreiner CE, Urbas JV (1988) Representation of amplitude modulation in the auditory cortex of cat. II. Comparison between cortical fields. Hearing Res. 32:49–64.

    Google Scholar 

  • Schröger E (1994) An event-related potential study of sensory representations of unfamiliar tonal patterns. Psychophysiol. 31:175–181.

    Google Scholar 

  • Schröger E, Nääatänen R, Paavilainen P (1992) Event-related potentials reveal how non-attended complex sound patterns are represented by the human brain. Neurosci. Letters 146:183–186.

    Google Scholar 

  • Schwindt PC, Spain WJ, Foehring RC, Stafstrom CE, Chubb MC, Crill WE (1988) Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. J. Neurophysiol. 59:450–467.

    Google Scholar 

  • Sokolov EN (1960) Neuronal model and orienting reflex. In: MAB Brazier, ed. The Central Nervous System and behavior. Madison Printing, Madison, NJ. pp. 187–276.

    Google Scholar 

  • Suarez H, Koch C, Douglas R (1995) Modeling direction selectivity of simple cells in striate visual cortex within the framework of the canonical microcircuit. J. Neurosci. 15:6700–6719.

    Google Scholar 

  • Taylor JG, Alavi FN (1993) Mathematical analysis of a competitive network for attention. In: JG Taylor, ed. Mathematical Approaches to Neural Networks. Elsevier, Amsterdam. pp. 341–382.

    Google Scholar 

  • Tiitinen H, Alho K, Huotilainen M, Ilmoniemi RJ, Simola J, Nääatänen R (1993) Tonotopic auditory cortex and the magnetoencephalographic (MEG) equivalent of the mismatch negativity. Psychophysiol. 30:537–540.

    Google Scholar 

  • Tiitinen H, May P, Reinikainen K, Nääatänen R (1994) Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372:90–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

May, P., Tiitinen, H., Ilmoniemi, R.J. et al. Frequency Change Detection in Human Auditory Cortex. J Comput Neurosci 6, 99–120 (1999). https://doi.org/10.1023/A:1008896417606

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008896417606

Navigation