Skip to main content
Log in

An improved nicotinic pharmacophore and a stereoselective CoMFA-model for nicotinic agonists acting at the central nicotinic acetylcholine receptors labelled by [3H]-N-methylcarbamylcholine

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A study of a series of compounds with agonistic effect at the α4β2 nicotinic acetylcholine receptors resulted in an improved pharmacophore model as well as a CoMFA model. The pharmacophore was composed of three pharmacophoric elements: (1) a site point (a) corresponding to a protonated nitrogen atom, (2) a site point (b) corresponding to an electronegative atom capable of forming a hydrogen bond, and (3) the centre of a heteroaromatic ring or a C=O bond (c). The pharmacophoric elements were related by the following parameters: (a–b) 7.3–8.0 Å, (a–c) 6.5–7.4 Å, and the angle between the two distance vectors (Δbac) 30.4–35.8°. In addition to this, a stereoselective CoMFA model was developed, which showed good predictability even for compound classes not present in the training set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Beers, W.H. and Reich, E., Nature, 228 (1970) 917.

    Google Scholar 

  2. Sheridan, R.P., Nilakantan, R., Dixon, J.S. and Venkataraghavan, R., J. Med. Chem., 29 (1986) 899.

    Google Scholar 

  3. Manallack, D.T., Gallagher, T. and Livingstone, D.J., in Devillers, J. (Ed), Neural Networks in QSAR and Drug Design, Academic Press, London, 1996, pp. 177-208.

    Google Scholar 

  4. Holladay, M.W., Lebold, S.A. and Lin, N.-H., Drug Dev. Res., 35 (1995) 191.

    Google Scholar 

  5. Glennon, R.A. and Dukat, M., Med. Chem. Res. (1996) 465.

  6. Hacksell, U. and Mellin, C., Prog. Brain Res., 79 (1989) 95.

    Google Scholar 

  7. Wright, E., Gallagher, T., Sharples, C.G.V. and Wonnacott, S., Bioorg. Med. Chem. Lett., 7 (1997) 2867.

    Google Scholar 

  8. Zhang, X., Stjernlöf, P., Adem, A. and Nordberg, A., Eur. J. Pharmacol., 135 (1987) 457.

    Google Scholar 

  9. Dukat, M., Damaj, M.I., Glassco, W., Dumas, D., May, E.L., Martin, B.R. and Glennon, R.A., Med. Chem. Res., 4 (1993) 131.

    Google Scholar 

  10. Abreo, M.A., Lin, N.-H., Garvey, D.S., Gunn, D.E., Hettinger, A.M., Wasicak, J.T., Pavlik, P.A., Martin, Y.C., Donnelly-Roberts, D.L., Anderson, D.J., Sullivan, J.P., Williams, M., Arneric, S.P. and Holladay, M.W., J. Med. Chem., 39 (1996) 817.

    Google Scholar 

  11. Koren, A.O., Horti, A.G., Mukhin, A.G., Gundisch, D., Kimes, A.S., Dannals, R.F. and London, E.D., J. Med. Chem., 41 (1998) 3690.

    Google Scholar 

  12. Cheng, Y.-X., Dukat, M., Dowd, M., Fiedler, W., Martin, B., Damaj, M.I. and Glennon, R.A., Eur. J. Med. Chem., 34 (1999) 177.

    Google Scholar 

  13. TØnder, J.E., Hansen, J.B., Begtrup, M., Pettersson, I., Rimvall, K., Christensen, B., Ehrbar, U. and Olesen, P.H., J. Med. Chem., 42 (1999) 4970.

    Google Scholar 

  14. Glennon, R.A., Herndon, J.L. and Dukat, M., Med. Chem. Res., 4 (1994) 461.

    Google Scholar 

  15. Holladay, M.W., Dart, M.J. and Lynch, J.K., J. Med. Chem., 40 (1997) 4169.

    Google Scholar 

  16. Okazawa, A., Akamatsu, M., Ohoka, A., Nishiwaki, H., Cho, W.-J., Nakagawa, Y., Nishimura, K. and Ueno, T., Pestic. Sci., 54 (1998) 134.

    Google Scholar 

  17. Sukekawa, M. and Nakayama, A., J. Pestic. Sci., 24 (1999) 38.

    Google Scholar 

  18. Olesen, P.H., TØnder, J.E., Hansen, J.B., Hansen, H.C. and Rimvall, K., Bioorganic and Medicinal Chemistry, submitted (2000).

  19. Mohamadi, F., Richards, N.G.J., Guida, W.C., Liskamp, R., Lipton, M., Caufield, C., Chang, G., Hendrickson, T. and Still, W.C., J. Comput. Chem., 11 (1990) 440.

    Google Scholar 

  20. Halgren, T.A., J. Comput. Chem., 17 (1996) 490.

    Google Scholar 

  21. Halgren, T.A., J. Comput. Chem., 17 (1996) 520.

    Google Scholar 

  22. Halgren, T.A., J. Comput. Chem., 17 (1996) 553.

    Google Scholar 

  23. Halgren, T.A., J. Comput. Chem., 17 (1996) 587.

    Google Scholar 

  24. Hasel, W., Hendrickson, T.F. and Still, W.C., Tetrahedron Comput. Method., 1 (1988) 103.

    Google Scholar 

  25. Still, W.C., Tempczyk, A., Hawley, R.C. and Hendrickson, T., J. Am. Chem. Soc., 112 (1990) 6127.

    Google Scholar 

  26. Tripos Inc., 1699 South Hanley Road, St. Louis, Missouri, 63144, USA

  27. Dukat, M., Fiedler, W., Dumas, D., Damaj, I., Martin, B.R., Rosecrans, J.A., James, J.R. and Glennon, R.A., Eur. J. Med. Chem., 31 (1996) 875.

    Google Scholar 

  28. Badio, B., Garraffo, H.M., Plummer, C.V., Padgett, W.L. and Daly, J.W., Eur. J. Pharmacol., 321 (1997) 189.

    Google Scholar 

  29. Badio, B. and Daly, J.W., Mol. Pharmacol., 45 (1994) 563.

    Google Scholar 

  30. Kim, K.H., Greco, G. and Novellino, E., Perspectives in Drug Discovery and Design, 12/13/14 (1998) 257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tønder, J.E., Olesen, P.H., Hansen, J.B. et al. An improved nicotinic pharmacophore and a stereoselective CoMFA-model for nicotinic agonists acting at the central nicotinic acetylcholine receptors labelled by [3H]-N-methylcarbamylcholine. J Comput Aided Mol Des 15, 247–258 (2001). https://doi.org/10.1023/A:1008140021426

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008140021426

Navigation