Adalsteinsson, D. and Sethian, J.A. 1993. A fast level set method for propagating interfaces. LBL TR-University of Berkeley.
Alvarez, L., Lions, P.L., and Morel, J.M. 1992. Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal., 29:845–866.
Alvarez, L., Guichard, F., Lions, P.L., and Morel, J.M. 1993. Axioms and fundamental equations of image processing. Arch. Rational Mechanics, 123.
Angenent, S. 1991. Parabolic equations for curves on surfaces, Part II. Intersections, blow-up, and generalized solutions. Annals of Mathematics, 133:171–215.
Blake, A. and Zisserman, A. 1987. Visual Reconstruction, MIT Press: Cambridge.
Born, M. and Wolf, W. 1986. Principles of Optics, Pergamon Press: Sixth (corrected) Edition.
Caselles, V., Catte, F., Coll, T., and Dibos, F. 1993. A geometric model for active contours. Numerische Mathematik, 66:1–31.
Caselles, V. and Sbert, C. 1994. What is the best causal scale-space for 3D images? Technical Report, Department of Math. and Comp. Sciences, University of Illes Balears, 07071 Palma de Mallorca, Spain.
Caselles, V., Kimmel, R., Sapiro, G., and Sbert, C. 1995. Minimal surfaces: A three dimensional segmentation approach. Technion EE Pub., 973 (submitted).
Chen, Y.G., Giga, Y., and Goto, S. 1991. Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations. J. Differential Geometry, 33:749–786.
Chopp, D. 1991. Computing minimal surfaces via level set curvature flows, LBL TR-University of Berkeley, 1991.
Cohen, L.D., On active contour models and balloons. CVGIP: Image Understanding, 53:211–218.
Cohen, I., Cohen, L.D., and Ayache, N. 1992. Using deformable surfaces to segment 3D images and infer differential structure. CVGIP: Image Understanding, 56:242–263.
Crandall, M.G., Ishii, H., and Lions, P.L. 1992. User's guide to viscosity solutions of second order partial linear differential equations. Bulletin of the American Math. Society, 27:1–67.
Dubrovin, B.A., Fomenko, A.T., and Novikov, S.P. 1984. Modern Geometry–Methods and Applications I, Springer-Verlag: New York.
Evans, L.C. and Spruck, J. 1991. Motion of level sets by mean curvature, I. J. Differential Geometry, 33:635–681.
Faugeras, O. 1993. On the evolution of simple curves of the real projective plane. Comptes rendus de l’Acad. des Sciences de Paris, 317:565–570.
Freeman, W.T. and Adelson, E.H. 1991. The design and use of steerable filters. IEEE-PAMI, 9:891–906.
Fua, P., and Leclerc, Y.G. 1990. Model driven edge detection. Machine Vision and Applications, 3:45–56.
Gage, M. and Hamilton, R.S. 1986. The heat equation shrinking convex plane curves. J. Differential Geometry, 23:69–96.
Geiger, D., Gupta, A., Costa, L.A., and Vlontzos, J. 1995. Dynamic programming for detecting, tracking, and matching deformable contours. IEEE-PAMI, 17(3).
Grayson, M. 1987. The heat equation shrinks embedded plane curves to round points. J. Differential Geometry, 26:285–314.
Guggenheimer, H.W. 1963. Differential Geometry, McGraw-Hill Book Company: New York.
Kass, M., Witkin, A., and Terzopoulos, D. 1988. Snakes: Active contour models. International Journal of Computer Vision, 1:321– 331.
Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., and Yezzi, A. 1995. Gradient flows and geometric active contour models. Proc. ICCV, Cambridge.
Kimia, B.B., Tannenbaum, A., and Zucker, S.W.–. Shapes, shocks, and deformations, I. International Journal of Computer Vision, 15:189–224.
Kimmel, R. and Bruckstein, A.M. 1993. Shape offsets via level sets. CAD, 25(5):154–162.
Kimmel, R., Amir, A., and Bruckstein, A.M. 1995. Finding shortest paths on surfaces using level sets propagation. IEEE–PAMI, 17(1):635–640.
Kimmel, R. and Bruckstein, A.M. 1995. Tracking level sets by level sets: A method for solving the shape from shading problem. CVIU, 62(1):47–58.
Kimmel, R., Siddiqi, K., Kimia, B.B., and Bruckstein, A.M. Shape from shading: Level set propagation and viscosity solutions. International Journal of Computer Vision, (to appear).
Kimmel, R., Kiryati, N., and Bruckstein, A.M. Distance maps and weighted distance transforms. Journal of Mathematical Imaging and Vision, Special Issue on Topology and Geometry in Computer Vision, (to appear).
Kimmel, R. and Sapiro, G. 1995. Shortening three dimensional curves via two dimensional flows. International Journal of Computer & Mathematics with Applications, 29:49– 62.
Leitner and Cinquin, 1991. Dynamic segmentation: Detecting complex topology 3D objects. Proc. of Eng. in Medicine and Biology Society, Orlando, Florida.
Malladi, R., Sethian, J.A., and Vemuri, B.C. 1994. Evolutionary fronts for topology independent shape modeling and recovery. Proc. of the 3rd ECCV, Stockholm, Sweden, pp. 3–13.
Malladi, R., Sethian, J.A., and Vemuri, B.C. 1995. Shape modeling with front propagation: A level set approach. IEEE Trans. on PAMI, 17:158–175.
Malladi, R., Sethian, J.A., and Vemuri, B.C. – A fast level set based algorithm for topology independent shape modeling. Journal of Mathematical Imaging and Vision, special issue on Topology and Geometry, A. Rosenfeld and Y. Kong. (Eds.), (to appear).
Malladi, R. and Sethian, J.A. personal communication.
McInerney, T. and Terzopoulos, D. 1995. Topologically adaptable snakes. Proc. ICCV, Cambridge.
Niessen, W.J., tar Haar Romeny, B.M., Florack, L.M.J., and Salden, A.H. 1993. Nonlinear diffusion of scalar images using well-posed differential operators. Technical Report, Utrecht University, The Netherlands.
Oliensis, J. and Dupuis, P. 1991. Direct method for reconstructing shape from shading. Proceedings SPIE Conf. 1570 on Geometric Methods in Computer Vision, pp. 116–128.
Olver, P.J., Sapiro, G., and Tannenbaum, A. 1994. Differential invariant signatures and flows in computer vision: A symmetry group approach. In Geometry Driven Diffusion in Computer Vision, B. Romeny (Ed.), Kluwer.
Olver, P.J., Sapiro, G., and Tannenbaum, A. –. Invariant geometric evolutions of surfaces and volumetric smoothing. SIAM J. of Appl. Math., (to appear).
Osher, S.J. and Sethian, J.A. 1988. Fronts propagation with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79:12– 49.
Perona, P. and Malik, J. 1991. Detecting and localizing edges composed of steps, peaks, and roofs. MIT–CICS Technical Report.
Romeny, B. (Ed.) 1994. Geometry Driven Diffusion in Computer Vision, Kluwer.
Rouy, E. and Tourin, A. 1992. A viscosity solutions approach to shape-from-shading. SIAM. J. Numer. Analy., 29:867–884.
Sapiro, G., Kimmel, R., Shaked, D., Kimia, B.B., and Bruckstein, A.M. 1993. Implementing continuous-scale morphology via curve evolution. Pattern Recog., 26(9):1363–1372.
Sapiro, G. and Tannenbaum, A. 1993a. Affine invariant scale-space. International Journal of Computer Vision, 11(1):25–44.
Sapiro, G. and Tannenbaum, A. 1993b. On invariant curve evolution and image analysis. Indiana University Mathematics Journal, 42(3).
Sapiro, G., and Tannenbaum, A. 1994a. On affine plane curve evolution. Journal of Functional Analysis, 119(1):79–120.
Sapiro, G. and Tannenbaum, A. 1994b. Edge preserving geometric enhancement of MRI data. EE-TR, University of Minnesota.
Sapiro, G. and Tannenbaum, A. 1995. Area and length preserving geometric invariant scale-spaces. IEEE Trans. PAMI, 17(1):67–72.
Sapiro, G., Kimmel, R., and Caselles, V. 1995. Object detection and measurements in medical images via geodesic active contours. Proc. SPIE-Vision Geometry, San Diego.
Sethian, J.A. 1989. A review of recent numerical algorithms for hypersurfaces moving with curvature dependent flows. J. Differential Geometry, 31:131–161.
Shah, J. 1995. Recovery of shapes by evolution of zero-crossings. Technical Report, Math. Dept. Northeastern Univ, Boston, MA.
Soner, H.M. 1993. Motion of a set by the curvature of its boundary. J. of Diff. Equations, 101:313–372.
Strang, G. 1986. Introduction to Applied Mathematics, Wellesley Cambridge Press.
Szeliski, R., Tonnesen, D., and Terzopoulos, D. 1993. Modeling surfaces of arbitrary topology with dynamic particles. Proc. CVPR, pp. 82–87.
Terzopoulos, D., Witkin, A., and Kass, M. 1988. Constraints on deformable models: Recovering 3D shape and nonrigid motions. Artificial Intelligence, 36:91–123.