Skip to main content
Log in

A New Metric for Grey-Scale Image Comparison

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Error measures can be used to numerically assess the differences between two images. Much work has been done on binary error measures, but little on objective metrics for grey-scale images. In our discussion here we introduce a new grey-scale measure, Δg, aiming to improve upon the most common grey-scale error measure, the root-mean-square error. Our new measure is an extension of the authors' recently developed binary error measure, Δb, not only in structure, but also having both a theoretical and intuitive basis. We consider the similarities between Δb and Δg when tested in practice on binary images, and present results comparing Δg to the root-mean-squared error and the Sobolev norm for various binary and grey-scale images. There are no previous examples where the last of these measures, the Sobolev norm, has been implemented for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdou, I. E. and Pratt, W. K. 1979. Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc. I. E. E. E., Vol. 67, No. 5, pp. 753-763.

    Google Scholar 

  • Baddeley, A. J. 1992a. An error metric for binary images. In Robust Computer Vision, W. Förstner and S. Ruwiedel (Eds.), Karlsruhe, Wichmann, pp. 59-78.

  • Baddeley, A. J. 1992b. Errors in binary images and an Lp version of the Hausdorff metric. Nieuw Archief Voor Wiskunde, 10:157-183.

    Google Scholar 

  • Borgefors, G. 1986. Distance transformations in digital images. Computer Vision, Graphics and Image Processing, 34:344- 371.

    Google Scholar 

  • Bracewell, R. N. 1986. The Fourier Transform and its Applications. McGraw-Hill Book Company Inc.: NY.

    Google Scholar 

  • Bryant, V. 1985. Metric Spaces: Iteration and Application. Cambridge University Press: Cambridge.

    Google Scholar 

  • Canny, J. 1986. A computational approach to edge detection. I. E. E. E. Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679-698.

    Google Scholar 

  • Choquet, G. 1966. Topology. Academic Press: NY, pp. 138-139.

    Google Scholar 

  • Cornsweet, T. N. 1970. Visual Perception. Academic Press: NY, pp. 249-253.

    Google Scholar 

  • Daly, S. 1993. The visible differences predictor: an algorithm for the assessment of image fidelity. In Digital Images and Human Vision, A. B. Watson (Ed.), MIT Press: Cambridge, Massachusetts, pp. 179-206.

    Google Scholar 

  • Delp, E. J. and Mitchell, O. R. 1979. Image compression using block truncation coding. I. E. E. E. Trans. on Comm., COM-27(9):1335- 1342.

    Google Scholar 

  • Dugundji, J. 1966. Topology. Allyn and Bacon, Inc.: Boston, pp. 83-85.

    Google Scholar 

  • Gonzalez, R. C. and Woods, R. E. 1993. Digital Image Processing. Addison-Wesley, pp. 307-407.

  • Habibi, A. 1974. Hybrid coding of pictorial data. I. E. E. E. Trans. on Comm., COM-22(5):614-624.

    Google Scholar 

  • Jain, A. K. 1981. Image data compression: A review. Proc. I. E. E. E., Vol. 69, No. 3, pp. 349-369.

    Google Scholar 

  • Linde, Y., Buzo, A., and Gray, R. M. 1980. An algorithm for vector quantization design. I. E. E. E. Trans. on Comm., COM-28(1):84- 95.

    Google Scholar 

  • Matheron, G. 1975. Random Sets and Integral Geometry. John Wiley & Sons: NY, pp. ix-x, 12-21, 128.

    Google Scholar 

  • Natterer, F. 1986. The Mathematics of Computerized Tomography. John Wiley & Sons: Chichester, pp. 200-203.

    Google Scholar 

  • Netravali, A. N. and Haskell, B. G. 1988. Digital Pictures, Representation and Compression. Plenum Press: NY, London, pp. 301- 501.

    Google Scholar 

  • Peli, T. and Malah, D. 1982. A study of edge detection algorithms. Computer Graphics and Image Processing, 20:1-21.

    Google Scholar 

  • Pratt, W. K. 1991. Digital Image Processing, second edition, John Wiley & Sons, Inc.: NY, pp. 538-543.

    Google Scholar 

  • Rabbini, M. and Jones, P. W. 1991. Digital Image Compression Techniques. SPIE Optical Engineering Press.

  • Rosenfeld, A. 1969. Picture Processing by Computer. Academic Press: NY, pp. 1-5.

    Google Scholar 

  • Serra, J. 1982. Image Analysis and Mathematical Morphology. Academic Press: London, pp. 34-90.

    Google Scholar 

  • Tagare, H. D. and deFigueiredo, R. J. P. 1990. On the localisation performance measure and optimal edge detection. I. E. E. E. Transactions on Pattern Analysis and Machine Intelligence, 12(12):1186- 1190.

    Google Scholar 

  • Teo, P. C. and Heeger, D. J. 1994a. Perceptual image distortion. In First International Conference on Image Processing.

  • Teo, P. C. and Heeger, D. J. 1994b. Perceptual image distortion (in press).

  • Vervaat, W. 1988. Narrow and vague convergence of set functions. Statistics and Probability Letters, 6:295-298.

    Google Scholar 

  • Wallace, G. K. 1992. The JPEG still compression standard. I. E. E. E. Transactions on Consumer Electronics, 38(1):18-34.

    Google Scholar 

  • Watson, A. B. (Ed.) 1993. Digital Images and Human Vision. MIT Press: Cambridge, Massachusetts, Chap. 3, pp. 139-140.

    Google Scholar 

  • Woods, J. W. and O'Neil, S. D. 1986. Subband coding of images. I. E. E. E. Trans. Acoust. Speech Signal Processing, ASSP-34(5):1278-1288.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, D.L., Baddeley, A.J. & Owens, R.A. A New Metric for Grey-Scale Image Comparison. International Journal of Computer Vision 24, 5–17 (1997). https://doi.org/10.1023/A:1007978107063

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007978107063

Navigation