Skip to main content
Log in

Endothelial Dysfunction in Hypercholesterolemia is Reversed by a Nutritional Product Designed to Enhance Nitric Oxide Activity

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the vascular andbiochemical effects of a formulated product in the form of a bar enrichedwith a combination of nutrients known to enhance the synthesis oractivity of endothelium-derived nitric oxide (EDNO). Individuals withhypercholesterolemia manifest impaired flow-mediated vasodilation, which islargely due to a reduction in EDNO activity. Oral supplementation withlarge amounts (6–21 g/day) of L-arginine, the precursor of EDNO,have been shown to improve endothelium-mediated vasodilation inhypercholesterolemia. Such large doses are effective but may be impracticalto take in capsule form. Accordingly, we have developed a nutrient barenriched with L-arginine as well as other ingredients that additivelyenhance EDNO activity. A pilot study in 41 hypercholesterolemic individualsindicated that the bar was well tolerated, had no adverse effects on serumchemistries or lipid profile, and normalized endothelial vasodilatorfunction. To definitively determine if the nutrient bar normalizesendothelial function, a double-blind, placebo-controlled study wasperformed. Flow-mediated endothelium-dependent vasodilation was assessedby high-resolution ultrasonography before and after 1 week of bar use(2 bars/day) in an additional group of 43 volunteer subjects (57 ±10 years old; 22 men, 21 women) with hypercholesterolemia. Subjectsmanifested an impaired flow-mediated vasodilation before theintervention. Vasodilator function in the active bar group improved towithin a normal range (6.5 ± 3% before to10 ± 5% after, P = 0.02; normal, 12± 3%) and was significantly better (P < 0.01)than in the placebo bar group (7.1 ± 3% before to6.7 ± 4% after). These findings reveal that use of a nutrientbar designed to enhance EDNO activity improves flow-mediatedendothelium-dependent vasodilation in hypercholesterolemicindividuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Moncada S, Palmer RMJ, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharma Rev 1991;43:109-142.

    Google Scholar 

  2. Cooke JP, Tsao PS. Endothelial alterations in atherosclerosis: The role of nitric oxide. In: Webb D, Vallance P, eds, Endothelial Function in Hypertension. Heidelberg: Springer-Verlag, 1997;29-38.

    Google Scholar 

  3. Celermajer DS. Endothelial function: Does it matter? Is it reversible? J AM Coll Cardial 1997;30:325-333.

    Google Scholar 

  4. Maxwell AJ, Cooke JP. The role of nitric oxide in atherosclerosis. Cor Art Dis 1999;10:277-286.

    Google Scholar 

  5. Palmer RMJ, Ferrige AG, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988;333:664-666.

    Google Scholar 

  6. Tsao PS, McEvoy LM, Drexler H, Butcher EC, Cooke JP. Enhanced endothelial adhesiveness in hypercholesterolemia is attenuated by L-arginine. Circulation 1994;89:2176-2182.

    Google Scholar 

  7. Creager MA, Gallagher SJ, Girerd XJ, Coleman SM, Dzau VJ, Cooke JP. L-arginine improves endothelium-dependent vasodilation in hypercholesterolemic humans. J Clin Invest 1992;90:1248-1253.

    Google Scholar 

  8. Clarkson P, Adams MR, Powe AJ, et al. Oral L-arginine improves endothelium-dependent dilation in hypercholesterolemic young adults. J Clin Invest 1996;97:1989-1994.

    Google Scholar 

  9. Imaizumi T, Hirooka Y, Masaki H, et al. Effects of L-arginine on forearm vessels and responses to acetylcholine. Hypertension 1992;20:511-517.

    Google Scholar 

  10. Drexler H, Zeiher AM, Meinzer K, Just H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. Lancet 1991;338:1546-1550.

    Google Scholar 

  11. Bode-Böger SM, Böger RH, Alfke H, et al. L-arginine induces nitric oxide-dependent vasodilation in patients with critical limb ischemia. A randomized, controlled study. Circulation 1996;93:85-90.

    Google Scholar 

  12. Böger R, Bode Böger SM, Szuba A, et al. Asymmetric dimethylarginine (ADMA): A novel risk factor for endothelial dysfunction: Its role in hypercholesterolemia. Circulation 1998;98:1842-1847.

    Google Scholar 

  13. Schellong SM, Böger RH, Burchert W, et al. Dose-related effect of intravenous L-arginine on muscular blood flow of the calf in patients with peripheral vascular disease: A H215O positron emission tomography study. Clin Sci (Colch) 1997;93:159-165.

    Google Scholar 

  14. Bode-Böger SM, Böger RH, Thiele W, Creutzig A, Frolich JC. L-arginine infusion therapy restores vascular NO production and improves the symptoms of intermittent claudication in patients with peripheral arterial disease. Circulation 1997;96(Suppl. I):I419.

    Google Scholar 

  15. Böger RH, Bode-Böger SM, Thiele W, Creutzig A, Alexander K, Frolich JC. Restoring vascular nitric oxide formation by L-arginine improves the symptoms of intermittent claudication in patients with peripheral arterial occlusive disease. J Am Coll Cardiol 1998;32:1336-1344.

    Google Scholar 

  16. Gryglewski RJ, Grodzinska L, Kostka-Trabka E, et al. Treatment with L-arginine is likely to stimulate generation of nitric oxide in patients with peripheral arterial obstructive disease. Wien Klin Wochenschr 1996;108:111-116.

    Google Scholar 

  17. Lerman A, Burnett JC, Jr., Higano ST, McKinley LJ, Holmes DR, Jr. Long-term L-arginine supplementation improves small-vessel coronary endothelial function in humans. Circulation 1998;97:2123-2128.

    Google Scholar 

  18. Ceremuzynski L, Chamiec T, Herbaczynska-Cedro K. Effect of supplemental oral L-arginine on exercise capacity in patients with stable angina pectoris. Am J Cardiol 1997;80:331-333.

    Google Scholar 

  19. Pettersson A, Uggla L, Backman V. Determination of dimethylated arginines in human plasma by highperformance liquid chromatography. J Chromatogr B Biomed Sci Appl 1997;692:257-262.

    Google Scholar 

  20. Plotnick GD, Corretti MC, Vogel RA. Effect of antioxidant vitamins on the transient impairment of endotheliumdependent brachial artery vasoactivity following a single high-fat meal. JAMA 1997;278:1682-1686.

    Google Scholar 

  21. Celermajer DS, Sorensen KE, Gooch VM,et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis. Lancet 1992;340:1111-1115.

    Google Scholar 

  22. Joannides R, Haefeli WE, Linder L, et al. Nitric oxide is responsible for flow-dependent dilatation of human peripheral conduit arteries in vivo. Circulation 1995;91:1314-1319.

    Google Scholar 

  23. Drexler H, Fischell TA, Pinto FJ, et al. Effect of L-arginine on coronary endothelial function in cardiac transplant recipients. Relation to vessel wall morphology. Circulation 1994;89:1615-1623.

    Google Scholar 

  24. Bode-Böger SM, Boger RH, Kienke S, Junker W, Frolich JC. Elevated L-arginine/dimethylarginine ratio contributes to enhanced systemic NO production by dietary L-arginine in hypercholesterolemic rabbits. Biochem Biophys Res Commun 1996;219:598-603.

    Google Scholar 

  25. Miyazaki H, Matsuoka H, Cooke JP, et al. Endogenous nitric oxide synthase inhibitor: A novel marker of atherosclerosis. Circulation 1999;99:1141-1146.

    Google Scholar 

  26. Ito A, Adimoolam S, Kimoto M, et al. Regulation of asymmetric dimethylarginine in human umbilical vein endothelial cells (abstr). Circulation 1998;98:I732.

    Google Scholar 

  27. Ito A, Tsao PS, Adimoolam S, Kimoto M, Ogawa T, Cooke JP. Novel mechanism for endothelial dysfunction: Dysregulation of dimethylarginine dimethylaminohydrolase. Circulation 1999;99:3092-3095.

    Google Scholar 

  28. Böger RH, Bode-Böger SM. [Endothelial dysfunction in peripheral arterial occlusive disease: From basic research to clinical use]. Vasa 1997;26:180-184.

    Google Scholar 

  29. Mosca L, Rubenfire M, Mandel C, et al. Antioxidant nutrient supplementation reduces the susceptibility of low density lipoprotein to oxidation in patients with coronary artery disease. J Am Coll Cardiol 1997;30:392-399.

    Google Scholar 

  30. Erl W, Weber C, Wardemann C, Weber PC. Alphatocopheryl succinate inhibits monocytic cell adhesion to endothelial cells by suppressing NF-kappa B mobilization. Am J Physiol 1997;273:H634-H640.

    Google Scholar 

  31. Gokce N, Keaney JF, Jr., Frei B, et al. Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation 1999;99:3234-3240.

    Google Scholar 

  32. White CR, Brock TA, Chang LY, et al. Superoxide and peroxynitrite in atherosclerosis. Proc Natl Acad Sci 1994;91:1044-1048.

    Google Scholar 

  33. Wei H, Bowen R, Cai Q, Barnes S, Wang Y. Antioxidant and antipromotional effects of the soybean isoflavone genistein. Proc Soc Exp Biol Med 1995;208:124-130.

    Google Scholar 

  34. Knight DC, Eden JA. A review of the clinical effects of phytoestrogens. Obstet Gynecol 1996;87:897-904.

    Google Scholar 

  35. Kleinert H, Wallerath T, Euchenhofer C, Ihrig-Biedert I, Li H, Forstermann U. Estrogens increase transcription of the human endothelial NO synthase gene: Analysis of the transcription factors involved. Hypertension 1998;31:582-588.

    Google Scholar 

  36. Anthony MS, Clarkson TB, Hughes CL, Jr., Morgan TM, Burke GL. Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J Nutr 1996;126:43-50.

    Google Scholar 

  37. Verhaar MC, Wever RM, Kastelein JJ, van Dam T, Koomans HA, Rabelink TJ. 5-Methyltetrahydrofolate, the active form of folic acid, restores endothelial function in familial hypercholesterolemia. Circulation 1998;97:237-241.

    Google Scholar 

  38. Brattstrom LE, Israelsson B, Jeppsson JO, Hultberg BL. Folic acid-an innocuous means to reduce plasma homocysteine. Scand J Clin Lab Invest 1988;48:215-221.

    Google Scholar 

  39. Van den Berg M, Boers GH, Franken DG, et al. Hyperhomocysteinaemia and endothelial dysfunction in young patients with peripheral arterial occlusive disease. Eur J Clin Invest 1995;25:176-181.

    Google Scholar 

  40. Gilligan DM, Sack MN, Guetta V, et al. Effect of antioxidant vitamins on low density lipoprotein oxidation and impaired endothelium-dependent vasodilation in patients with hypercholesterolemia. J Am Coll Cardiol 1994;24:1611-1617.

    Google Scholar 

  41. Elliott TG, Barth JD, Mancini GB. Effects of vitamin E on endothelial function in men after myocardial infarction. Am J Cardiol 1995;76:1188-1190.

    Google Scholar 

  42. Heitzer T, Herttuala SY, Wild E, Munzel T, Drexler H. Effect of vitamin E on endothelial function and plasma autoantibodies in patients with increased oxidative stress. Circulation 1997;96(Suppl. I):I417.

    Google Scholar 

  43. Ting HH, Timimi FK, Haley EA, Roddy MA, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in forearm resistance vessels of humans with hypercholesterolemia. Circulation 1997;95:2617-2622.

    Google Scholar 

  44. Wolf A, Zalpour C, Theilmeier G, et al. Dietary L-arginine supplementation normalizes platelet aggregation in hypercholesterolemic humans. J AmColl Cardiol 1997;29:479-485.

    Google Scholar 

  45. Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, Billingham ME. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 1992;90:1168-1172.

    Google Scholar 

  46. Davies MG, Barber E, Dalen H, Hagen PO. L-arginine supplementation improves venous endothelial cell but not smooth muscle cell dysfunction induced by prolonged dietinduced hypercholesterolemia. J Invest Surg 1996;9:415-422.

    Google Scholar 

  47. Candipan RC, Wang BY, Buitrago R, Tsao PS, Cooke JP. Regression or progression. Dependency on vascular nitric oxide. Arterioscler Thromb Vasc Biol 1996;16:44-50.

    Google Scholar 

  48. Aji W, Ravalli S, Szabolcs M, et al. L-arginine prevents xanthoma development and inhibits atherosclerosis in LDL receptor knockout mice. Circulation 1997;95:430-437.

    Google Scholar 

  49. Böger RH, Bode-Böger SM, Brandes RP, et al. Dietary L-arginine reduces the progression of atherosclerosis in cholesterol-fed rabbits: Comparison with lovastatin. Circulation 1997;96:1282-1290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maxwell, A.J., Anderson, B., Zapien, M.P. et al. Endothelial Dysfunction in Hypercholesterolemia is Reversed by a Nutritional Product Designed to Enhance Nitric Oxide Activity. Cardiovasc Drugs Ther 14, 309–316 (2000). https://doi.org/10.1023/A:1007886725480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007886725480

Navigation