1.

Priest, A.H. (1976). Influence of strain rate and temperature on the fracture and tensile properties of several metallic materials. In *Proc. Intl. Conf. on Dynamic Fracture Toughness*, 95–111 Welding Institute, Cambridge.

2.

Cox, T.B. and Low, J.R. (1974). An investigation of the plastic fracture of AISI 4340 and 18Ni-200 grade maraging steels. *Metall. Trans.*
**5**, 1457–1470.

3.

Basu, S. and Narasimhan, R. (1999) A finite element study of the effects of material characteristics and crack tip constraint on dynamic, ductile fracture initiation. *J. Mech. Phys. Solids*
**47**, 325–350.

4.

Pan, J., Saje, M. and Needleman, A. (1983). Localisation of deformation in rate sensitive porous plastic solids. *Int J. Fracture*
**21**, 261–278.

5.

Rice, J.R. and Johnson, M.A. (1970). The role of large geometry changes in plane strain fracture. In *Inelastic Behaviour of Solids*(Edited by Kanninen, M.F., Adler, A.R., Rosenfield, A.R. and Jaffe, R.I.), pp. 641–672. McGraw Hill, New York.

6.

Aravas, N. and McMeeking, R.M. (1985). Finite element analysis of void growth near a blunting crack tip. *J. Mech. Phys. Solids*, **33**, 25–49.

7.

Ghosal, A.K. and Narasimhan, R. (1997) A finite element study of the effect of void initiation and growth on mixed-mode ductile fracture. *Mech. Mater.*
**25**, 113–127.

8.

Costin, L. S., Duffy, J. and Freund, L. B. (1985). Fracture initiation in metals under stress wave loading conditions. In *Fast Fracture and Crack Arrest, ASTM STP*
**627**, pp. 310–318.

9.

Homma, H., Shockey, D. A. and Murayama, Y. (1983). Response of cracks in structural materials to short pulse loads. *J. Mech. Phys. Solids*, **31**, 261–279.

10.

Owen, D., Zhuang, S., Rosakis, A. J. and Ravichandran, G. (1998) Experimental determination of dynamic crack initiation and propagation fracture toughness in thin aluminium sheets. *Int. J. Fracture*
**90**, 153–174.

11.

Owen, D., Rosakis, A.J., and Johnson, W.L. (1998). Dynamic failure mechanisms in Berillium-bearing bulk metallic glasses. SM Report 98–22, GALCIT, California Institute of Technology, Pasadena, U.S.A.

12.

Freund, L. B. (1990). *Dynamic Fracture Mechanics*. Cambridge University Press, Cambridge.

13.

Guduru, P. R., Singh, R. P., Ravichandran, G. and Rosakis, A. J. (1997). Dynamic crack initiation in ductile steels. GALCIT Report, California Institute of Technology, Pasadena, U.S.A.

14.

Venkert, A., Guduru, P. R. and Ravichandran, G. (1998). Mechanisms of dynamic failure in Ni-Cr steels. SM Report 98–5, GALCIT, California Institute of Technology, Pasadena, U.S.A.

15.

Gurson, A.L. (1977). Continuum theory of ductile rupture by void nucleation and growth – Part I. *J. Engng. Mat. Tech.*
**99**, 2–15.

16.

Basu, S. and Narasimhan, R. (1996). Finite element simulation of Mode I dynamic, ductile fracture initiation. *Int. J. Solids Struct.*
**33**, 1191–1207.

17.

Brown, L.M. and Embury, J.D. (1973). Initiation and growth of voids at second phase particles. In *Proc. Third Intl. Conf. on Strength of Metals and Alloys*, pp. 164–179. Inst. of Metals, London.

18.

Andersson, H. (1977). Analysis of a model for void growth and coalescence ahead of a moving crack tip. *J. Mech. Phys. Solids*
**25**, 217–233.

19.

Tvergaard, V. (1982). Influence of void nucleation on ductile shear fracture at a free surface. *J. Mech. Phys. Solids*
**30**, 399–415.

20.

Thomason, P.F. (1990). *Ductile fracture of metals*. Pergamon Press, Oxford.

21.

Chu, C.C. and Needleman, A. (1980). Void nucleation effects in biaxially stretched sheets. *J. Engng. Mat. Tech.*
**102**, 249–256.

22.

Needleman, A. (1988). Material rate dependence and mesh sensitivity in localization problems. *Comput. Methods Appl. Mech. Engng.*
**67**, 69–85.

23.

Needleman, A. and Tvergaard, V. (1994). Mesh effects in the analysis of dynamic, ductile crack growth. *Engng. Fracture Mech*. **47**, 75–91.

24.

Narasimhan, R. and Rosakis, A. J. (1990). Three-dimensional effects near a crack tip in a ductile three-point bend specimen: Part I-A numerical investigation. *Trans. ASME J. Appl. Mech*. **57**, 607–617.

25.

Narasimhan, R., Rosakis, A. J. and Moran, B. (1992). A three-dimensional numerical investigation of fracture initiation by ductile failure mechanisms in a 4340 steel. *Int. J. Fracture*. **56**, 1–24.

26.

Narasimhan, R. (1994). A numerical study of static and dynamic fracture initiation in a ductile material containing a dual population of second phase particles. *Engng. Fracture Mech.*
**47**, 919–948.

27.

Belytshko, T. (1983). In *Computational Methods for Transient Analysis*(edited by Belytshko, T. and Hughes, T. J. R), Elsevier, Amsterdam, p. 1.

28.

Nakamura, T., Shih, C. F. and Freund, L. B. (1986) Analysis of a dynamically loaded three-point bend ductile fracture specimen. *Engng. Fracture Mech.*
**25**, 333–339.

29.

Al-Ani, A. M. and Hancock, J. W. (1991). J-dominance of short cracks in tension and bending. *J. Mech. Phys. Solids*
**29**, 23–43.

30.

O'Dowd, N. P. and Shih, C. F. (1991). Family of crack-tip fields characterized by a triaxiality parameter – I. Structure of fields. *J. Mech. Phys. Solids*
**39**, 989–1015.

31.

O'Dowd, N. P. and Shih, C. F. (1992). Family of crack-tip fields characterized by a triaxiality parameter – II. Fracture applications. *J. Mech. Phys. Solids*
**40**, 939–963.

32.

Basu, S. and Narasimhan, R. (1999). A numerical investigation of loss of crack tip constraint in a dynamically loaded ductile specimen. To appear in *J. Mech. Phys. Solids*.

33.

Kanninen, M. F. and Popelar, C. H. (1985). *Advanced fracture mechanics*, Oxford University Press, pp. 550–551.

34.

Shih, C.F. (1981). Relationship between J-integral and the crack opening displacement for stationary and extending cracks. *J. Mech. Phys. Solids*
**29**, 305–326.