Skip to main content
Log in

Computational carbohydrate chemistry: what theoretical methods can tell us

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Computational methods have had a long history of application to carbohydrate systems and their development in this regard is discussed. The conformational analysis of carbohydrates differs in several ways from that of other biomolecules. Many glycans appear to exhibit numerous conformations coexisting in solution at room temperature and a conformational analysis of a carbohydrate must address both spatial and temporal properties. When solution nuclear magnetic resonance data are used for comparison, the simulation must give rise to ensemble-averaged properties. In contrast, when comparing to experimental data obtained from crystal structures a simulation of a crystal lattice, rather than of an isolated molecule, is appropriate. Molecular dynamics simulations are well suited for such condensed phase modeling. Interactions between carbohydrates and other biological macromolecules are also amenable to computational approaches. Having obtained a three-dimensional structure of the receptor protein, it is possible to model with accuracy the conformation of the carbohydrate in the complex. An example of the application of free energy perturbation simulations to the prediction of carbohydrate-protein binding energies is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. McIntire TM, Penner RM, Brant DA (1995) Macromolecules 28: 6375–7.

    Google Scholar 

  2. Rice KG, Wu P, Brand L, Lee YC (1991) Biochemistry 30: 6646–55.

    Google Scholar 

  3. Stevens ES (1994) Biopolymers 34: 1395–401.

    Google Scholar 

  4. Fernández P, Jiménez-Barbero J (1994) J Carbohydr Chem 13: 207–33.

    Google Scholar 

  5. Fernández P, Jiménez-Barbero J (1993) Carbohydr Res 248: 15–36.

    Google Scholar 

  6. Cumming DA, Carver JP (1987) Biochemistry 26: 6664–76.

    Google Scholar 

  7. Wooten EW, Edge CJ, Bazzo R, Dwek RA, Rademacher TW (1990) Carbohydr Res 203: 13–17.

    Google Scholar 

  8. Woods RJ (1996) InReviews in Computational Chemistry (Lipkowitz KB, Boyd DB, eds) pp 129–65. New York: VCH Publishers Inc.

    Google Scholar 

  9. Melberg S, Rasmussen K (1980) Carbohydr Res 78: 215–24.

    Google Scholar 

  10. Bock K, Lemieux RU (1982) Carbohydr Res 100: 63–74.

    Google Scholar 

  11. Bock K, Josephson S, Bundle DR (1982) J Chem Soc Perkin Trans II: 59–70.

    Google Scholar 

  12. Lemieux RU, Bock K, Delbaere LTJ, Koto S, Rao VS (1980) Can J Chem 58: 631–53.

    Google Scholar 

  13. Lemieux RU, Bock K (1983) Arch Biochem Biophys 221: 125–34.

    Google Scholar 

  14. Paulsen H, Peters T, Sinnwell V, Lebhun R, Meyer B (1984) Liebigs Ann Chem 951–76.

  15. Peters T, Meyer B, Stuike-Prill R, Somorjai R, Brisson J-R (1993) Carbohydr Res 238: 49–73.

    Google Scholar 

  16. Levery SB (1991) Glycoconjugate J 8: 484–92.

    Google Scholar 

  17. Poppe L, Stuike-Prill R, Meyer B, van Halbeek H (1992) J Biomol NMR 2: 109–36.

    Google Scholar 

  18. Weimar T, Meyer B, Peters T (1993) J Biomol NMR 3: 399–414.

    Google Scholar 

  19. Engelsen SB, Rasmussen K (1993) Int J Biol Macromol 15: 56–62.

    Google Scholar 

  20. Stuike-Prill R, Meyer B (1990) Eur J Biochem 194: 903–19.

    Google Scholar 

  21. Woods RJ, Dwek RA, Edge CJ, Fraser-Reid B (1995) J Phys Chem 99: 3832–46.

    Google Scholar 

  22. Imberty A, Pérez S (1994) Glycobiology 4: 351–66.

    Google Scholar 

  23. Glennon TM, Zheng Y-J, LcGrand SM, Shutzberg BA, Merz KM Jr (1994) J Comput Chem 15: 1019–40.

    Google Scholar 

  24. Grootenhuis PDJ, Haasnoot CAG (1993) Molec Simulation 10: 75–95.

    Google Scholar 

  25. Imberty A, Hardman KD, Carver JP, Pérez S (1991) Glycobiology 1: 631–42.

    Google Scholar 

  26. Homans SW (1990) Biochemistry 29: 9110–18.

    Google Scholar 

  27. Ha SN, Giammona A, Field M, Brady JW (1988) Carbohydr Res 180: 207–21.

    Google Scholar 

  28. Rutherford TJ, Partridge J, Weller CT, Homans SW (1993) Biochemistry 32: 12715–24.

    Google Scholar 

  29. Bock K (1983) Pure Appl Chem 55: 605–22.

    Google Scholar 

  30. Thogersen H, Lemieux RU, Bock K, Meyer B (1982) Can J Chem 60: 44–57.

    Google Scholar 

  31. Momany FA, McGuire RF, Burgess AW, Scheraga HA (1975) J Phys Chem 79: 2361–81.

    Google Scholar 

  32. Lemieux RU, Koto S (1974) Tetrahedron 30: 1933–44.

    Google Scholar 

  33. Rasmussen K (1982) Acta Chem Scand A36: 323–7.

    Google Scholar 

  34. Koehler JEH, Saenger W, van Gunsteren WF (1987) Eur Biophys J 15: 197–210.

    Google Scholar 

  35. Prabhakaran M, Harvey SC (1987) Biopolymers 26: 1087–96.

    Google Scholar 

  36. Clark M, Cramer III RD, Van Opdenbosch N (1989) J Comput Chem 10 982–1012.

    Google Scholar 

  37. Hagler AT, Lifson S, Dauber P (1979) J Am Chem Soc 101: 5122–30.

    Google Scholar 

  38. Casset F, Hamelryck T, Loris R, Brisson J-R, Tellier C, Dao-Thi M-H, Wyns L, Poortmans F, Pérez S, Imberty A (1995) J Biol Chem 270: 25619–28.

    Google Scholar 

  39. Dauchez M, Mazurier J, Montreuil J, Vergoten G (1992) Biochemie 74: 63–74

    Google Scholar 

  40. Balaji PV, Qasba PK, Rao VSR (1993) Biochemistry 32: 12599–611.

    Google Scholar 

  41. Asensio JL, López R, Fernández-Mayoralas A, Jiménez-Barbero J (1994) Tetrahedron 50: 6417–32.

    Google Scholar 

  42. Allinger NL (1977) J Am Chem Soc 99: 8127–34.

    Google Scholar 

  43. Allinger NL, Yuh YH, Lii J-H (1989) J Am Chem Soc 111: 8551–66.

    Google Scholar 

  44. Asensio JL, Jimenez-Barbero J (1995) Biopolymers 35: 55–73.

    Google Scholar 

  45. Widmalm G, Venable RM (1994) Biopolymers 34: 1079–88.

    Google Scholar 

  46. French AD, Miller DP, Aabloo A (1993) Int J Biol Macromol 15: 30–6.

    Google Scholar 

  47. Kouwijzer MLCE, van Eijck BP, Kroes SJ, Kroon J (1993) J Comput Chem 14: 1281–9.

    Google Scholar 

  48. Koehler JEH, Saenger W, van Gunsteren WF (1988) J Biomolec Struct Dynam 6: 181–97.

    Google Scholar 

  49. Kouwijzer MLCE, van Eijck BP, Kooijman H, Kroon J (1995) Acta Cryst Sect B 51: 209–20.

    Google Scholar 

  50. Woods RJ, Edge CJ, Wormald MR, Dwek RA (1993) In Complex Carbohydrates in Drug Research (Bock K, Clausen H, Krogsgaard-Larsen P, Kofod H, eds) pp 15–36. Copenhagen: Munksgaard.

    Google Scholar 

  51. Woods RJ, Pathiaseril A, Wormald MR, Edge CJ, Dwek RA (1996) Eur J Biochem (submitted).

  52. Stokke BT, Talashek TA, Brant DA (1994) Macromolecules 27: 1124–35.

    Google Scholar 

  53. Heiner AP, Sugiyama J, Teleman O (1995) Carbohydr Res 273: 207–23.

    Google Scholar 

  54. Ramachandran G, Schlick T (1996) DIMACS Series in Discrete Methematics and Theoretical Computer Science 23: 215–31.

    Google Scholar 

  55. Widmalm G, Pastor RW (1992) J Chem Soc 88: 1747–54.

    Google Scholar 

  56. Andrew SM, Thomasson KA, Northrup SA (1993) J Am Chem Soc 115: 5516–21.

    Google Scholar 

  57. Northrup SH, Thomasson KA, Miller CM (1993) Biochemistry 32: 6613–23.

    Google Scholar 

  58. Dwek RA (1995) Science 269: 1234–5.

    Google Scholar 

  59. Hart GW (1992) Curr Opin Cell Biol 4: 1017–23.

    Google Scholar 

  60. Sharon N, Lis H (1989) Science 246: 227–46.

    Google Scholar 

  61. Rademacher TW, Parekh RB, Dwek RA (1988) Ann Rev Biochem 57: 785–838.

    Google Scholar 

  62. Varki A (1993) Glycobiology 3: 97–130.

    Google Scholar 

  63. Springer TA, Lasky LA (1991) Nature 349: 196–7.

    Google Scholar 

  64. Quiocho FA (1986) Ann Rev Biochem 55: 287–315.

    Google Scholar 

  65. Lemieux RU (1989) Chem Soc Rev 18: 347–74.

    Google Scholar 

  66. Chervenak MC, Toone EJ (1994) J Am Chem Soc 116: 10533–9.

    Google Scholar 

  67. Chervenak MC, Toone EJ (1995) Biochemistry 34: 5685–95.

    Google Scholar 

  68. Mandal DK, Bhattacharyya L, Koenig SH, Brown RD III, Oscarson S, Brewer CF (1994) Biochemistry 33: 1157–62.

    Google Scholar 

  69. Mandal DK, Kishore N, Brewer CF (1994) Biochemistry 33: 1149–56.

    Google Scholar 

  70. Schwarz FP, Puri KD, Bhat RG, Surolia A (1993) J Biol Chem 268: 7668–77.

    Google Scholar 

  71. Ramkumar R, Surolia A, Podder SK (1995) Biochem J 308: 237–41.

    Google Scholar 

  72. Evans SV, Sigurskjold BW, Jennings HJ, Brisson J-R, To R, Tse WC, Altman E, Frosch M, Weisgerber C, Kratzin HD, Klebert S, Vaesen M, Bitter-Suermann D, Rose DR, Young NM, Bundle DR (1995) Biochemistry 34: 6737–44.

    Google Scholar 

  73. Bundle DR, Eichler E, Gidney MA, Meldal M, Ragauskas A, Sigurskjold BW, Sinnot B, Watson DC, Yaguchi M, Young NM (1994) Biochemistry 33: 5172–82.

    Google Scholar 

  74. Ito W, Kurosawa Y (1993) J Biol Chem 268: 16639–47.

    Google Scholar 

  75. Varki A (1992) Curr Opin Cell Biol 4: 257–66.

    Google Scholar 

  76. Butcher EC (1991) Cell 67: 1033–6.

    Google Scholar 

  77. Weis WI, Drickamer K, Hendrickson WA (1992) Nature 360: 127–34.

    Google Scholar 

  78. Bourne Y, Rougé P, Cambillau C (1992) J Biol Chem 267: 197–203.

    Google Scholar 

  79. Williams BA, Chervenak MC, Toone EJ (1992) J Biol Chem 267: 22907–11.

    Google Scholar 

  80. Sigurskjold BW, Bundle DR (1992) J Biol Chem 267: 8371–6.

    Google Scholar 

  81. Jiménez-Barbero J, Junquera E, Martín-Pastor M, Sharma S, Vicent C, Penadés S (1995) J Am Chem Soc 117: 11198–204.

    Google Scholar 

  82. Lemieux RU (1992) Carbohydrate Antigens ACS Symposium Series # 519 6–18.

  83. Pearlman DA, Kollman PA (1989) In Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications (van Gunsteren WF, Weiner PK, eds) pp 101–19. The Netherlands: ESCOM.

    Google Scholar 

  84. Singh UC, Brown FK, Bash PA, Kollman PA (1987) J Am Chem Soc 109: 1607–14.

    Google Scholar 

  85. van Gunsteren F (1989) In Computer Simulation of Biomolecular Systems: Theoretical and Experimental Applications (van Gunsteren WF, Weiner PK, eds) pp 27–59 The Netherlands: ESCOM.

    Google Scholar 

  86. Straatsma TP (1996) In Reviews in Computational Chemistry (Boyd DB, Lipkowitz K, eds) New York: VCH, pp 81–127.

    Google Scholar 

  87. Mizushima N, Spellmeyer D, Hirono S, Pearlman D, Kollman P (1991) J Biol Chem 266: 11801–9.

    Google Scholar 

  88. Miyamoto S, Kollman P (1993) Proteins 16: 226–45.

    Google Scholar 

  89. Woods RJ, Pathiaseril A (1996) (unpublished data).

  90. Wessels MR, Pozsgay V, Kasper DL, Jennings HJ (1987) J Biol Chem 262: 8262–7.

    Google Scholar 

  91. Peters T, Pinto BM (1996) Curr Opin Struct Biol 6: 710–20.

    Google Scholar 

  92. Woods RJ (1995) Curr Opin Struct Biol 5: 591–8.

    Google Scholar 

  93. Pérez S, Imberty A, Carver JP (1994) Advan Comput Biol 1: 147–202.

    Google Scholar 

  94. French AD, Brady JW (1990) Computer Modeling of Carbohydrate Molecules (American Chemical Society Washington DC).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Woods, R.J. Computational carbohydrate chemistry: what theoretical methods can tell us. Glycoconj J 15, 209–216 (1998). https://doi.org/10.1023/A:1006984709892

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006984709892

Navigation