Skip to main content
Log in

The plantibody approach: expression of antibody genes in plants to modulate plant metabolism or to obtain pathogen resistance

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Immunomodulation is a molecular technique that allows the interference with cellular metabolism or pathogen infectivity by the ectopic expression of genes encoding antibodies or antibody fragments. In recent years, several reports have proven the value of this tool in plant research for modulation of phytohormone activity and for blocking plant-pathogen infection. Efficient application of the plantibody approach requires different levels of investigation. First of all, methods have to be available to clone efficiently the genes coding for antibodies or antibody fragments that bind the target antigen. Secondly, conditions to obtain high accumulation of antigen-binding antibodies and antibody fragments in plants are being investigated and optimized. Thirdly, different strategies are being evaluated to interfere with the function of the target molecule, thus enabling immunomodulation of metabolism or pathogen infectivity. In the near future, optimized antibody gene isolation and expression, especially in reducing subcellular environments, such as the cytosol and nucleus, should turn immunomodulation into a powerful and attractive tool for gene inactivation, complementary to the classical antisense and co-suppression approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Artsaenko, O., Peisker, M., zur Nieden, U., Fiedler, U., Weiler, E.W., Müntz, K. and Conrad, U. 1995. Expression of a singlechain Fv antibody against abscisic acid creates a wilty phenotype in transgenic tobacco. Plant J. 8: 745–750.

    Google Scholar 

  • Artsaenko, O., Phillips, J., Fiedler, U., Peisker, M. and Conrad, U. 1999. Intracellular immunomodulation in plants-a new tool for the investigation of phytohormones. In: K. Harper and A. Ziegler (Eds.), Recombinant Antibodies: Applications in Plant Science and Plant Pathology, Taylor & Francis, London, pp. 145–156.

    Google Scholar 

  • Baum, T.J., Hiatt, A., Parrott, W.A., Pratt, L.H. and Hussey, R.S. 1996. Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode. Mol. Plant-Microbe Interact. 9: 382–387.

    Google Scholar 

  • Ben-Yakir, D. and Shochat, C. 1996. The fate of immunoglobulin G fed to larvae of Ostrinia nubilalis. Entomol. Exp. Appl. 81: 1–5.

    Google Scholar 

  • Bourque, J.E. 1995. Antisense strategies for genetic manipulations in plants. Plant Sci. 105: 125–149.

    Google Scholar 

  • Chen, Y.D. and Chen, T.A. 1998. Expression of engineered antibodies in plants: a possible tool for spiroplasma and phytoplasma disease control. Phytopathology 88: 1367–1371.

    Google Scholar 

  • de Haard, H.J., van Neer, N., Reurs, A., Hufton, S.E., Roovers, R.C., Henderikx, P., de Bruïne, A.P., Arends, J.-W. and Hoogenboom, H.R. 1999. A large non-immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274: 18218–18230.

    Google Scholar 

  • De Jaeger, G., Buys, E., Eeckhout, D., Bruyns, A.-M., De Neve, M., De Wilde, C., Gerats, T., Van Montagu, M., Fischer, R. and Depicker, A. 1997. Use of phage display for isolation and characterization of single-chain variable fragments against dihydroflavonol 4-reductase from Petunia hybrida. FEBS Lett. 403: 116–122.

    Google Scholar 

  • De Jaeger, G., Buys, E., Eeckhout, D., De Wilde, C., Jacobs, A., Kapila, J., Angenon, G., Van Montagu, M., Gerats, T. and Depicker, A. 1999. High level accumulation of single-chain variable fragments in the cytosol of transgenic Petunia hybrida. Eur. J. Biochem. 259: 426–434.

    Google Scholar 

  • De Jaeger, G., Fiers, E., Eeckhout, D. and Depicker, A. 2000. Analysis of the interaction between single-chain variable fragments and their antigen in a reducing intracellular environment using the two-hybrid system. FEBS Lett. 467: 316–320.

    Google Scholar 

  • De Wilde, C., Peeters, K., Van Montagu, M. and Depicker, A. 1998. Transient expression of IgG antibodies and antibody fragments in intact leaf tissue of Nicotiana tabacum. Meded. Fac. Landbouwwet. Univ. Gent 63/4b: 1703–1706.

    Google Scholar 

  • De Wilde, C., De Jaeger, G., De Neve, M., Van Montagu, M. and Depicker, A. 1999. Production of antibodies in transgenic plants-a general introduction. In: K. Harper and A. Ziegler (Eds.) Recombinant Antibodies: Applications in Plant Science and Plant Pathology, Taylor & Francis, London, pp. 113–127.

    Google Scholar 

  • East, I.J., Fitzgerald, C.J., Pearson, R.D., Donaldson, R.A., Vuocolo, T., Cadogan, L.C., Tellam, R.L. and Eisemann, C.H. 1993. Lucilla cuprina: inhibition of larval growth induced by immunization of host sheep with extracts of larval peritrophic membrane. Int. J. Parasitol. 23: 221–229.

    Google Scholar 

  • Fecker, L.F. and Koenig, R. 1999. Engineering of Beet necrotic yellow vein virus (BNYVV) resistance in Nicotiana benthamiana. In: K. Harper and A. Ziegler (Eds.) Recombinant Antibodies: Applications in Plant Science and Plant Pathology, Taylor & Francis, London, pp. 157–170.

    Google Scholar 

  • Fecker, L.F., Koenig, R. and Obermeier, C. 1997. Nicotiana benthamiana plants expressing beet necrotic yellow vein virus (BNYVV) coat protein-specific scFv are partially protected against the establishment of the virus in the early stages of infection and its pathogenic effects in the late stages of infection. Arch. Virol. 142: 1857–1863.

    Google Scholar 

  • Fischer, R., Liao, Y.-C., Hoffmann, K., Schillberg, S. and Emans, N. 1999. Molecular farming of recombinant antibodies in plants. Biol. Chem. 380: 825–839.

    Google Scholar 

  • Griffiths, A.D., Williams, S.C., Hartley, O., Tomlinson, I.M., Waterhouse, P., Crosby, W.L., Kontermann, R.E., Jones, P.T., Low, N.M., Allison, T.J., Prospero, T.D., Hoogenboom, H.R., Nissim, A., Cox, J.P.L., Harrison, J.L., Zaccolo, M., Gherardi, E. and Winter, G. 1994. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13: 3245–3260.

    Google Scholar 

  • Hamers-Casterman, C., Atarhouch, T., Muyldermans, S., Robinson, G., Hamers, C., Bajyana Songa, E., Bendahman, N. and Hamers, R. 1993. Naturally occurring antibodies devoid of light chains. Nature 363: 446–448.

    Google Scholar 

  • Hanes, J. and Plückthun, A. 1997. In vitro selection and evolution of functional proteins by using ribosome display. Proc. Natl. Acad. Sci. USA 94: 4937–4942.

    Google Scholar 

  • Huits, H.S.M., Gerats, A.G.M., Kreike, M.M., Mol, J.N.M. and Koes, R.E. 1994. Genetic control of dihydroflavonol 4-reductase gene expression in Petunia hybrida. Plant J. 6: 295–310.

    Google Scholar 

  • Kapila, J., De Rycke, R., Van Montagu, M. and Angenon, G. 1997. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci. 122: 101–108.

    Google Scholar 

  • Lauwereys, M., Ghahroudi, M.A., Desmyter, A., Kinne, J., Hölzer, W., De Genst, E., Wyns, L. and Muyldermans, S. 1998. Potent enzyme inhibitors derived from dromedary heavy-chain antibodies. EMBO J. 17: 3512–3520.

    Google Scholar 

  • Le Gall, F., Bové, J.-M. and Garnier, M. 1998. Engineering of a single-chain variable-fragment (scFv) antibody specific for the stolbur phytoplasma (mollicute) and its expression in Escherichia coli and tobacco plants. Appl. Environ. Microbiol. 64: 4566–4572.

    Google Scholar 

  • Lehane, M.J. 1996. Digestion and fate of the vertebrate bloodmeal in insects. In: S.K. Wikel (Ed.) The Immunology of Host-Ectoparasitic Arthropod Relationships, CAB International, Wallingford, UK, pp. 131–149.

    Google Scholar 

  • Lener, M., Horn, I.R., Cardinale, A., Messina, S., Nielsen, U.B., Rybak, S.M., Hoogenboom, H.R., Cattaneo, A. and Biocca, S. 2000. Diverting a protein from its cellular location by intracellular antibodies. The case of p21Ras. Eur. J. Biochem. 267: 1196–1205.

    Google Scholar 

  • Marasco, W.A. 1995. Intracellular antibodies (intrabodies) as research reagents and therapeutic molecules for gene therapy. Immunotechnology 1: 1–19.

    Google Scholar 

  • Owen, M., Gandecha, A., Cockburn, B. and Whitelam, G. 1992. Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. Bio/technology 10: 790–794.

    Google Scholar 

  • Phillips, J., Artsaenko, O., Fiedler, U., Horstmann, C., Mock, H.-P., Müntz, K. and Conrad, U. 1997. Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J. 16: 4489–4496.

    Google Scholar 

  • Rosso, M.-N., Schouten, A., Roosien, J., Borst-Vrenssen, T., Hussey, R.S., Gommers, F.J., Bakker, J., Schots, A. and Abad, P. 1996. Expression and functional characterization of a single chain Fv antibody directed against secretions involved in plant nematode infection process. Biochem. Biophys. Res. Commun. 220: 255–263.

    Google Scholar 

  • Sblattero, D. and Bradbury, A. 2000. Exploiting recombination in single bacteria to make large phage antibody libraries. Nature Biotechnol. 18: 75–80.

    Google Scholar 

  • Schouten, A. 1998. Plantibodies-Requirements for Expression and Subcellular Targeting. Ph.D. thesis, Wageningen Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Schouten, A., Roosien, J., van Engelen, F.A., de Jong, G.A.M.I., Borst-Vrenssen, A.W.M., Zilverentant, J.F., Bosch, D., Stiekema, W.J., Gommers, F.J., Schots, A. and Bakker, J. 1996. The C-terminal KDEL sequence increases the expression level of a single chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol. Biol. 30: 781–793.

    Google Scholar 

  • Schouten, A., Roosien, J., de Boer, J.M., Wilmink, A., Rosso, M.-N., Bosch, D., Stiekema, W.J., Gommers, F.J., Bakker, J. and Schots, A. 1997. Improving scFv antibody expression levels in the plant cytosol. FEBS Lett. 415: 235–241.

    Google Scholar 

  • Sheets, M.D., Amersdorfer, P., Finnern, R., Sargent, P., Lindqvist, E., Schier, R., Hemingsen, G., Wong, C., Gerhart, J.C. and Marks, J.D. 1998. Efficient construction of a large nonimmune phage antibody library: the production of high-affinity human single-chain antibodies to protein antigens. Proc. Natl. Acad. Sci. USA 95: 6157–6162.

    Google Scholar 

  • Shimada, N., Suzuki, Y., Nakajima, M., Conrad, U., Murofushi, N. and Yamaguchi, I. 1999. Expression of a functional singlechain antibody against GA24/19 in transgenic tobacco. Biosci. Biotechnol. Biochem. 63: 779–783.

    Google Scholar 

  • Smant, G., Stokkermans, J.P.W.G., Yan, Y.T., de Boer, J.M., Baum, T.J., Wang, X.H., Hussey, R.S., Gommers, F.J., Henrissat, B., Davis, E.L., Helder, J., Schots, A. and Bakker, J. 1998. Endogenous cellulases in animals: isolation of β-1,4-endoglucanase genes from two species of plant-parasitic cyst nematodes. Proc. Natl. Acad. Sci. USA 95: 4906–4911.

    Google Scholar 

  • Tavladoraki, P., Benvenuto, E., Trinca, S., De Martinis, D., Cattaneo, A. and Galeffi, P. 1993. Transgenic plants expressing a functional single-chain Fv antibody are specifically protected from virus attack. Nature 366: 469–472.

    Google Scholar 

  • Tavladoraki, P., Girotti, A., Donini, M., Arias, F.J., Mancini, C., Morea, V., Chiaraluce, R., Consalvi, V. and Benvenuto, E. 1999. A single-chain antibody fragment is functionally expressed in the cytoplasm of both Escherichia coli and transgenic plants. Eur. J. Biochem. 262: 617–624.

    Google Scholar 

  • Vũ, K.B. 1999. Llama Antibodies and Engineering of Single-Domain Antibody Fragments. Ph.D. thesis, Vrije Universiteit Brussel, Brussels, Belgium.

    Google Scholar 

  • Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C., McCafferty, J., Hodits, R.A., Wilton, J. and Johnson, K.S. 1996. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature Biotechnol. 14: 309–314.

    Google Scholar 

  • Voss, A., Niersbach, M., Hain, R., Hirsch, H.J., Liao, Y.C., Kreuzaler, F. and Fischer, R. 1995. Reduced virus infectivity in N. tabacum secreting a TMV-specific full-size antibody. Mol. Breed. 1: 39–50.

    Google Scholar 

  • Wattad, C., Kobiler, D., Dinoor, A. and Prusky, D. 1997. Pectate lyase of Colletotrichum gloeosporioides attacking avocado fruits: cDNA cloning and involvement in pathogenicity. Physiol. Mol. Plant Pathol. 50: 197–212.

    Google Scholar 

  • Wong, J.Y.M. and Opdebeeck, J.P. 1993. Immunity in vaccinated cattle exposed to experimental and natural infestations with Boophilus microplus. Int. J. Parasitol. 23: 689–692.

    Google Scholar 

  • Zimmermann, S., Schillberg, S., Liao, Y.-C. and Fisher, R. 1998. Intracellular expression of TMV-specific single-chain Fv fragments leads to improved virus resistance in Nicotiana tabacum. Mol. Breed. 4: 369–379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Jaeger, G., De Wilde, C., Eeckhout, D. et al. The plantibody approach: expression of antibody genes in plants to modulate plant metabolism or to obtain pathogen resistance. Plant Mol Biol 43, 419–428 (2000). https://doi.org/10.1023/A:1006471528756

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006471528756

Navigation