Skip to main content
Log in

Polypeptide tags, ubiquitous modifiers for plant protein regulation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Evidence has emerged over the past few years that plants, like animals and fungi, employ a variety of polypeptides as tags to reversibly or irreversibly affect the function, structure, location, and/or turnover of numerous intracellular proteins. In plants, known polypeptide tags include ubiquitin, SUMO, RUB, and APG12, with the possibility of others. These modifiers are typically added post-translationally using individual sets of conjugase pathways that attach the polypeptides via an isopeptide bond to ε-lysyl amino group(s) in the targets. Often the tags can be removed subsequently by unique proteases that specifically cleave only the isopeptide bond. Examples also exist where the tag is added during translation upon fusion of the coding sequence of the tag with that of the target. Based on the number and diversity of targets, ubiquitin is the most influential modifier which mainly serves as a reusable signal for selective protein degradation by the 26S proteasome. In contrast, SUMO, RUB and APG12 become attached to a more limited number of targets and appear to have specialized functions, including roles in nuclear pore assembly/function, cell-cycle regulation, and lysosomal/vacuole trafficking, respectively. Based on their widespread occurrence in plants and their pervasive role in various biological processes, polypeptide tags likely play a prominent role in plant cell regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bachmair, A., Becker, F., Masterson, V. and Schell, J. 1990. Perturbation of the ubiquitin system causes leaf curling, vascular tissue alterations, and necrotic lesions in a higher plant. EMBO J. 9: 4543–4549.

    Google Scholar 

  • Bayer, P., Arndt, A., Metzger, S., Mahajan, R., Melchior, F., Jaenicke, R. and Becker, J. 1998. Structure determination of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 280: 275–286.

    Google Scholar 

  • Brower, C.S., Shilatifard, A., Mather, T., Kamura, T., Takagi, Y., Haque, D., Treharne, A., Foundling, S.I., Conaway, J.W. and Conaway, R.C. 1999. The Elongin B ubiquitin homology domain, identification of Elongin B sequences important for interaction with elongin C. J. Biol. Chem. 274: 13629–13636.

    Google Scholar 

  • Callis, J.A., Raasch, J.A. and Vierstra, R.D. 1990. Ubiquitin extension proteins in Arabidopsis thaliana: structure, localization, and expression of their promoters in transgenic tobacco. J. Biol. Chem. 265: 12486–12493.

    Google Scholar 

  • Callis, J.A., Carpenter, T.B., Sun, C.-W. and Vierstra, R.D. 1995. Structure and evolution of genes encoding polyubiquitin and ubiquitin-like proteins in Arabidopsis thaliana ecotype Columbia. Genetics 139: 921–939.

    Google Scholar 

  • Clough, R.C. and Vierstra, R.D. 1998. Phytochrome degradation. Plant Cell Environ. 20: 713–721.

    Google Scholar 

  • del Pozo, J.C. and Estelle, M. 1999. Function of the ubiquitinproteasome pathway in auxin responses. Trends Plant Sci. 4: 107–112.

    Google Scholar 

  • del Pozo, J.C., Timpte, C., Tan, S., Callis, J. and Estelle, M. 1998. The ubiquitin-related protein RUB1 and auxin response in Arabidopsis. Science 280: 1760–1763.

    Google Scholar 

  • Desterro, J.M., Rodriguez, M.S. and Hay, R.T. 1998. SUMO-1 modification of I?B? inhibits NF-?B activation. Mol. Cell 2: 233–239.

    Google Scholar 

  • Finley, D., Bartel, B. and Varshavsky, A. 1989. The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338: 394–401.

    Google Scholar 

  • Genschik, P., Criqui, M.C., Parmentier, Y., Derevier, A. and Fleck, J. 1998. Cell cycle-dependent proteolysis in plants: identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor MG132. Plant Cell 10: 2063–2075.

    Google Scholar 

  • Girod, P.-A., Fu, H., Zryd, J.-P. and Vierstra, R.D. Multiubiquitin chain-binding subunit MCB1 (RPN10) of the 26S proteasome is essential for developmental progression in Physcomitrella patens. Plant Cell In press.

  • Gray, W.M., del Pozo, J.C., Walker, L., Hobbie, L., Risseeuw, E., Banks, T., Crosby W.L., Yang, M., Ma, H. and Estelle, M. 1999. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev. 13: 1678–1691.

    Google Scholar 

  • Hochstrasser, M. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30: 405–439.

    Google Scholar 

  • Hochstrasser, M. 1998. There's the Rub: a novel ubiquitin like modification linked to cell cycle regulation. Genes Dev. 12: 901–907.

    Google Scholar 

  • Hershko, A. and Ciechanover, A. 1998. The ubiquitin system. Annu. Rev. Biochem. 67: 425–479.

    Google Scholar 

  • Lammer, D., Mathias, N., Laplaza, J.M., Jiang, W., Liu, Y., Callis, J., Goebl, M. and Estelle, M. 1998. Modification of yeast Cdc53p by ubiquitin-related protein Rub1p affects function of the SCFcdc4 complex. Genes Dev. 12: 914–926.

    Google Scholar 

  • Li, S.-J. and Hochstrasser, M. 1999. A new protease required for cell-cycle progression in yeast. Nature 398: 244–251.

    Google Scholar 

  • Loeb, K.R. and Haas, A.L. 1992. The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J. Biol. Chem. 267: 7806–7813.

    Google Scholar 

  • Matunis, M.J., Coutavas, E. and Blobel, G. 1996. A novel ubiquitinlike modification modulates the partioning of the Ran-GTPaseactiviating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135: 1457–1470.

    Google Scholar 

  • Mizushima, N., Noda, T., Yoshimori, T., Tanaka, Y., Ishii, T., George, M.D., Klionsky, D.J., Ohsumi, M. and Ohsumi, Y. 1998. A protein conjugation system essential for autophagy. Nature 395: 395–398.

    Google Scholar 

  • Mizushima, N., Sugita, H., Yoshimori, T. and Ohsumi, Y. 1999. A new protein conjugation system in human. J. Biol. Chem. 273: 33889–33892.

    Google Scholar 

  • Nakamura, M., Xavier, R.M., Tsunematsu, T. and Tanigawa, Y. 1995. Molecular cloning and characterization of a cDNA encoding monoclonal nonspecific suppressor factor. Proc. Natl. Acad. Sci. USA 92: 3463–3467.

    Google Scholar 

  • Olivera, J. and Wool, I.G. 1993. The carboxyl extension of a ubiquitin-like protein is rat ribosomal protein S30. J. Biol. Chem. 268: 17967–17974.

    Google Scholar 

  • Rao-Naik, C., delaCruz, W., Laplaza, J.M., Tan, S., Callis, J. and Fisher, A.J. 1998. The Rub family of ubiquitin-like proteins: crystal structure of Arabidopsis RUB1 and expression of multiple RUBs in Arabidopsis. J. Biol. Chem. 273: 34976–34982.

    Google Scholar 

  • Saitoh, H., Pu, R.T. and Dasso, M. 1997. SUMO-1: wrestling with a new ubiquitin-related modifier. Trends Biochem. Sci. 22: 374–376.

    Google Scholar 

  • Schauber, C., Chen, L., Tongaonkar, P., Vega, I., Lambertson, D., Potts, W. and Madura, K. 1998. Rad23 links DNA repair to the ubiquitin-proteasome pathway. Nature 391: 715–718.

    Google Scholar 

  • Sturm, A. and Lienhard, S. 1998. Two isoforms of plant RAD23 complement a UV sensitive rad23 mutant in yeast. Plant J. 13: 815–821.

    Google Scholar 

  • Tyers, M. and Williams, A.R. 1999. One ring to rule a family of E3 ubiquitin ligases. Science 284: 601–604.

    Google Scholar 

  • Vierstra, R.D. 1996. Proteolysis in plants: mechanisms and functions. Plant Mol. Biol. 32: 275–302.

    Google Scholar 

  • Vijay-Kumar, S., Bugg, C.E., Wilkinson, K.D., Vierstra, R.D., Hatfield, P.M. and Cook,W.J. 1987. Comparison of the threedimensional structures of human, yeast and oat ubiquitin. J. Biol. Chem. 262: 6396–6399.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vierstra, R.D., Callis, J. Polypeptide tags, ubiquitous modifiers for plant protein regulation. Plant Mol Biol 41, 435–442 (1999). https://doi.org/10.1023/A:1006323317890

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006323317890

Navigation