Skip to main content
Log in

Semilattices of Ordered Compactifications

  • Published:
Order Aims and scope Submit manuscript

Abstract

We investigate the structure of the complete join-semilattice \(K_o ({\text{X}})\) of all (non-equivalent) ordered compactifications ofa completely regular ordered space X. We show that anordered set is an oc-semilattice, that is, isomorphic to some \(K_o ({\text{X}})\), if and only if it is dually isomorphic to thesystem \(\mathcal{Q}\left( {\text{Y}} \right)_{X, \leqslant } \) of all closed quasiorders ρ on a compact space \({\text{Y = (}}Y,\tau {\text{)}}\) whichinduce a given order ≤ on a subset X of Y and for which therelation \(\rho \backslash (Y\backslash X)^2 \) is antisymmetric. Itturns out that the complete lattices of the form \(K_o ({\text{X}})\) are, up to isomorphism, exactly the duals ofintervals in the closure systems \(\mathcal{Q}\left( {\text{Y}} \right)\) of allclosed quasiorders on compact spaces Y. For finiteoc-semilattices, we give a purely order-theoretical description. Inparticular, we show that a finite lattice is isomorphic to some \(K_o ({\text{X}})\) if and only if it is dually isomorphic to aninterval in the lattice \(\mathcal{Q}\left( Y \right)\) of all quasiorders on afinite set Y. In connection with very recent investigations of lattices ofthe form \(\mathcal{Q}\left( {\text{Y}} \right)\) and \(\mathcal{Q}\left( Y \right)\) andtheir intervals we gain from these representation theorems substantialinsights into the structure of the semilattices \(K_o ({\text{X}})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandroff, P. (1935–36) Sur les espaces discrets, C.R. Acad. Sci. Paris 200, 1649–1651.

    Google Scholar 

  2. Birkhoff, G. (1935–36) Sur les espaces discrets, C.R. Acad. Sci. Paris 201, 19–20.

    Google Scholar 

  3. Blatter, J. (1975) Order compactifications of totally ordered topological spaces, J. Approx. Theory 13, 56–65.

    Google Scholar 

  4. Engelking, R. (1989) General Topology, Revised and completed edition, Sigma series in Pure Mathematics, Heldermann, Berlin, Germany.

    Google Scholar 

  5. Erné, M. and Reinhold, J. (1996) Lattices of closed quasiorders, JCMCC 21, 41–64.

    Google Scholar 

  6. Erné, M. and Reinhold, J. (1995) Intervals in lattices of quasiorders, Order 12, 375–403.

    Google Scholar 

  7. Erné, M. and Reinhold, J., Tensor products of complete lattices and ordered one-point compactifications, to appear in Quaestiones Mathematicae.

  8. Firby, P. A. (1973) Lattices and compactifications I, II, III, Proc. London Math. Soc. 27, 22–68.

    Google Scholar 

  9. Gierz, G. and Keimel, K. (1981) Continuous ideal completions and compactifications, in Continuous Lattices, Proc. Bremen 1979, Springer-Verlag, Berlin, Heidelberg, New York, U.S.A.

    Google Scholar 

  10. Gillman, L. and Jerison, M. (1960) Rings of Continuous Functions, Van Nostrand, Princeton, NJ, U.S.A.

    Google Scholar 

  11. Herrlich, H. (1986) Topologie I: Topologische Räume, Berliner Studienreihe zur Mathematik, Heldermann, Berlin, Germany.

    Google Scholar 

  12. Hofmann, K. H. (1984) Stably continuous frames and their topological manifestations, in: H. L. Bentley et al. (eds.), Categorical Topology, Proc. Conference Toledo, Ohio 1983, Heldermann, Berlin, Germany.

    Google Scholar 

  13. Lawson, J. D. (1991) Order and strongly sober compactifications, in G. M. Reed, A.W. Roscoe and R. F. Wachter, Topology and Category Theory in Computer Science, Clarendon Press, Oxford, U.K.

    Google Scholar 

  14. Nachbin, L. (1965) Topology and Order, Van Nostrand Math. Studies 4, Princeton, NJ.

    Google Scholar 

  15. Reinhold, J. (1996) Halbverbände von Ordnungskompaktifizierungen, Ph.D. Dissertation, Hannover, Germany.

    Google Scholar 

  16. Richmond, T. A. (1993) Posets of ordered compactifications, Bull. Austral. Math. 47, 59–72.

    Google Scholar 

  17. Schwarz, F. and Weck-Schwarz, S. (1993) Is every partially ordered space with a completely regular topology already a completely regular partially ordered space?, Math. Nachr. 161, 199–201.

    Google Scholar 

  18. Steiner, A. K. (1966) The lattice of topologies: structure and complementation, Trans. Amer. Math. Soc. 122, 379–397.

    Google Scholar 

  19. Tuma, J., On the structure of quasi-ordering lattices, Preprint.

  20. Ñnlü, Y. (1978) Lattices of compactifications of Tychonoff spaces, Gen. Topology Appl. 9, 41–57.

    Google Scholar 

  21. Walker, R. C. (1974) The Stone- Čech Compactification, Ergebnisse der Mathematik, Bd. 83, Springer-Verlag, Berlin & Heidelberg, Germany; New York, U.S.A.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhold, J. Semilattices of Ordered Compactifications. Order 14, 279–294 (1997). https://doi.org/10.1023/A:1006077701842

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006077701842

Navigation