Skip to main content
Log in

Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A synthetic antifreeze protein gene was expressed in plants and reduced electrolyte leakage from the leaves at freezing temperatures. The synthetic AFP was expressed as a fusion to a signal peptide, directing it to the extracytoplasmic space where ice crystallization first occurs. The gene was introduced to Solanum tuberosum L. cv. Russet Burbank by Agrobacterium-mediated transformation. Transformants were identified by PCR screening and expression of the introduced protein was verified by immunoblot. Electrolyte-release analysis of transgenic plant leaves established a correlation between the level of transgenic protein expression and degree of tolerance to freezing. This is the first identification of a phenotype associated with antifreeze protein expression in plant tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Sthruhl K: Current Protocols in Molecular Biology. John Wiley & Sons, New York (1987).

    Google Scholar 

  2. Beremand PD, Hannapel DJ, Guerra DJ, Kuhn DN, Ohlrogge JB: Synthesis, cloning, and expression in Escherichia coliof a spinach acyl carrier protein-I gene. Arch Biochem Biophys 256: 90-100 (1987).

    Google Scholar 

  3. Carpenter JF, Hansen TN: Antifreeze protein modulates cell survival during cryopreservation: mediation through influence on ice crystal growth. Proc Natl Acad Sci USA 89: 8953-8957 (1992).

    Google Scholar 

  4. Cativelli L, Bartels D: Biochemistry and molecular biology of cold-inducible enzymes and proteins in higher plants. In: Wray JL (ed) Inducible Plant Proteins, pp. 267-288. Cambridge University Press, Cambridge (1992).

    Google Scholar 

  5. Cutler AJ, Saleem M, Kendall E, Gusta LV, Georges F, Fletcher GL: Winter flounder antifreeze protein improves the cold hardiness of plant tissues. J Plant Physiol 135: 351-354 (1989).

    Google Scholar 

  6. Davies PL, Hew CL: Biochemistry of fish antifreeze proteins. FASEB J 4: 2460-2468.

  7. Davies PL, Roach AH, Hew CL: DNA sequence coding for an antifreeze protein precursor from winter flounder. Proc Natl Acad Sci USA 79: 335-339 (1982).

    Google Scholar 

  8. de Vries AL: Antifreeze glycopeptides and peptides: interactions with ice and water. Meth Enzymol 127: 293-303 (1986).

    Google Scholar 

  9. Dorel C, Voelker TA, Herman EM, Chrispeels MJ: Transport of proteins to the plant vacuole is not by bulk flow through the secretary system, and requires positive sorting information. J Cell Biol 108: 327-337 (1989).

    Google Scholar 

  10. Duman JG, Olsen MT: Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology 30: 322-328 (1993).

    Google Scholar 

  11. Edwards AR, Van den Bussche RA, Wichman HA, Orser CS: Unusual pattern of bacterial ice nucleation gene evolution. Mol Biol Evol 11: 911-920 (1994).

    Google Scholar 

  12. FitzGerald LM, Rodríguez A, Smutzer G: Codon usage in bony fishes. Mol Mar Biol Biotechnol 2: 112-119 (1993).

    Google Scholar 

  13. Georges F, Saleem M, Cutler AJ: Design and cloning of a synthetic gene for the flounder antifreeze protein and its expression in plant cells. Gene 91: 159-165 (1990).

    Google Scholar 

  14. Guy CL: Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41: 187-223 (1990).

    Google Scholar 

  15. Hew CL, Wang NC, Yan S, Cai H, Sclater A, Fletcher GL: Biosynthesis of antifreeze polypeptides in the winter flounder. Eur J Biochem 160: 267-272 (1986).

    Google Scholar 

  16. Hightower R, Baden C, Penzes E, Lund P, Dunsmuir P: Expression of antifreeze proteins in transgenic plants. Plant Mol Biol 17: 1013-1021 (1991).

    Google Scholar 

  17. Hon W, Griffith M, Chong P, Yang DSC: Extraction and isolation of antifreeze proteins from winter rye (Secale cerealeL.) leaves. Plant Physiol 104: 971-980 (1994).

    Google Scholar 

  18. Ishida BK, Snyder GW, Belknap WR: The use of in vitro-grown microtuber disks in Agrobacterium-mediated transformation of Russet Burbank and Lemhi Russet potatoes. Plant Cell Rep 8: 325-328 (1989).

    Google Scholar 

  19. Kenward KD, Altschuler M, Hildebrand D, Davies PL: Accumulation of type I fish antifreeze protein in transgenic tobacco is cold-specific. Plant Mol Biol 23: 337-385 (1993).

    Google Scholar 

  20. Knight CA, Duman JG: Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiology 23: 256-262 (1986).

    Google Scholar 

  21. Knight CA, Wen D, Laursen RA: Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 32: 23- 34 (1995).

    Google Scholar 

  22. Levitt J: Responses of plants to environmental stresses. Academic Press, London (1980).

    Google Scholar 

  23. Negulescu PA, Rubinsky B, Fletcher GL, Machen TE: Fish antifreeze proteins black Ca entry into rabbit parietal cells. Am J Physiol 263: C1310-C1313 (1992).

    Google Scholar 

  24. Ooms G, Hooykaas PJJ, van Veen RJM, van Beelen P, Regensburg-Tuink TJG, Schilperoort RA: Octopine Ti-Plasmid deletion mutants of Agrobacterium tumefacienswith emphasis on the right side of the T-region. Plamid 7: 15-29 (1982).

    Google Scholar 

  25. Palta JP, Jensen KG, Li PH: Cell membrane alterations following a slow freeze-thaw cycle: ion release, injury and recovery. In: Li PH, Sakai A (eds) Plant Cold Hardiness and Freezing Stress, pp. 221-242. Academic Press, New York (1982).

    Google Scholar 

  26. Rancourt DE, Davies PL, Walker VK: Differential translatability of antifreeze protein mRNAs in a transgenic host. Biochim Biophys Acta 1129: 188-194 (1992).

    Google Scholar 

  27. Raymond JA, Wilson P, de Vries AL: Inhibition of growth of nonbasal planes in ice by fish antifreezes. Proc Natl Acad Sci USA 86: 881-885 (1989).

    Google Scholar 

  28. Rubinsky B, Arav A, Fletcher GL: Hypothermic protection: a fundamental property of ‘antifreeze’ proteins. Biochem Biophys Res Comm 180: 566-571 (1991).

    Google Scholar 

  29. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1989).

    Google Scholar 

  30. Schardl CL, Byrd AD, Benzion G, Altshuler MA, Hildebrand DF, Hunt AG: Design and construction of a versatile system for the expression of foreign genes in plants. Gene 61: 1-11 (1987).

    Google Scholar 

  31. Shewfelt RL: Responses of plant membranes to chilling and freezing. In: Leshem YY (ed) Plant Membranes, pp. 192-219. Kluwer Academic Publishers, Dordrecht, Netherlands (1992).

    Google Scholar 

  32. Sicheri F, Yang DSC: Ice binding structure and mechanism of an antifreeze structure from winter flounder. Nature 375: 427-431 (1995).

    Google Scholar 

  33. Steponkus PL, Webb MS: Freeze-Induced Dehydration and Membrane Destabilization in Plants In: Somero et al.(eds) Water and Life pp. 338-362. Springer-Verlag, Berlin (1992).

    Google Scholar 

  34. Steponkus PL, Weist SC: Plasma membrane alterations following cold acclimation and freezing. In: Li PH, Sakai A (eds) Plant Cold Hardiness and Freezing Stress: Mechanisms and Crop Implications, vol. 1, pp. 75-91. Academic Press, New York (1988).

    Google Scholar 

  35. Sukumaran MP, Weiser CJ: Freezing injury in potato leaves. Plant Physiol 50: 564-567 (1972).

    Google Scholar 

  36. Sukumaran MP, Weiser CJ: An excised leaflet test for evaluating potato frost tolerance. HortScience 7: 467-468 (1972).

    Google Scholar 

  37. Urrutia ME, Duman JG, Knight CA: Plant thermal hysteresis proteins. Biochem Biophys Acta 1121: 199–206 (1992).

    Google Scholar 

  38. Wada K, Wada Y, Ishibashi F, Gojobori T, Ikemura T: Codon usage tabulated from the GenBank genetic sequence data. Nucl Acids Res 20 (Supp): 2111-2118 (1992).

    Google Scholar 

  39. Wilson PW, Leader JP: Stabilization of supercooled fluids by thermal hysteresis protiens. Biophys J 68: 2098-2107 (1995).

    Google Scholar 

  40. Yang DSC, Sax M, Chakrabartty A, Hew CL: Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature 333: 232-237 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wallis, J.G., Wang, H. & Guerra*, D.J. Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant Mol Biol 35, 323–330 (1997). https://doi.org/10.1023/A:1005886210159

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005886210159

Navigation