Skip to main content
Log in

Carbon storage in forest soil of Finland. 1. Effect of thermoclimate

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

A total of 30 coniferous forest sites representing two productivityclasses, forest types, were investigated on a temperature gradient(effective temperature sum using +5°C threshold 800–1300degree-days and annual mean temperature –0.6–+3.9°C) inFinland for studying the effect of thermoclimate on the soil C storage.Other soil forming factors were standardized within the forest types sothat the variation in the soil C density could be related to temperature.According to the applied regression model, the C density of the 0–1 mmineral soil layer increased 0.266 kg m–2 for every 100 degree-dayincrease in the temperature sum, and the layer contained 57% and28% more C under the warmest conditions of the gradient comparedto the coolest in the less and more productive forest type, respectively.Accordingly, this soil layer was estimated to contain 23 more C ina new equilibrium with a 4°C higher annual meantemperature in Finland. The C density of the organic layer was notassociated with temperature. Both soil layers contained more C at thesites of the more productive forest type, and the forest type explained36% and 70% of the variation in the C density of the organic and 0–1m layers, respectively. Within the forest types, the temperature sumaccounted for 33–41% of the variation in the 0–1 m layer. Theseresults suggest that site productivity is a cause for the large variation inthe soil C density within the boreal zone, and relating the soil C densityto site productivity and temperature would help to estimate the soil Creserves more accurately in the boreal zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson JM (1992) Responses of soils to climate change. Adv. Ecol. Res. 22: 163–210

    Google Scholar 

  • Anonymous (1988) SAS/STAT User's guide, Release 6.03 Edition. SAS Institute Inc. Cary, Ne

  • Anonymous (1991) Climatological statistics in Finland 1961-1990. Supplement to the meteorological yearbook of Finland 90(1)

  • Anonymous (1994) Yearbook of Forest Statistics. The Finnish Forest Research Institute, Helsinki

    Google Scholar 

  • Berg B, Berg MP, Bottner P, Box E, Breymeyer A, Calvo De Anta R, Couteaux M, Escudero A, Callardo A, Kratz W, Madeira M, Mälkönen E, McClaughery C, Meentemeyer V, Muñoz F, Piussi P, Remecle J & Virzo De Santo A (1993) Litter mass loss rates in pine forests of Europe and Eastern United States: Some relationships with climate and litter quality. Biogeochemistry 20: 127–159

    Google Scholar 

  • Birkeland (1984) Soils and Geomorphology. Oxford University Press, New York, Oxford

    Google Scholar 

  • Bonan GB & Van Cleve K (1992) Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forests. Can. J. For. Res. 22: 629–639

    Google Scholar 

  • Boström S, Backman R & Hupa M (1990) Energiantuotannon ja-kulutuksen kasvihuonekaasujen päästöt Suomessa. Kauppa-ja teollisuusministeriö, Helsinki. Sarja D:186

  • Burke IC, Yonker CM, Parton WJ, Cole CV, Flach K & Schimel DS (1989) Texture, climate, and cultivation effects on soil organic matter content in U.S. grassland soils. Soil Sci. Soc. Am. J. 53: 800–805

    Google Scholar 

  • Cajander AK (1925) The theory of forest types. Acta For. Fenn. 29(3): 1–108

    Google Scholar 

  • Donner JJ (1969) A profile across Fennoscandia of LateWeichselian and Flandrian shore-lines. Societas Scientiarium Fennica, Commentationes Physico-Mathematicae 36(1): 1–23

    Google Scholar 

  • Elonen P (1971) Particle-size analysis of soil. Acta Agraria Fennica 112: 1–122

    Google Scholar 

  • Emanuel WR, Shugart HH & Stevenson MP (1985) Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Clim. Change 7: 29–43

    Google Scholar 

  • Eronen M & Haila H (1981) The highest shore-line of the Baltic in Finland. Striae 14: 157–158

    Google Scholar 

  • Eronen M (1990) Muuttuva ilmasto, Summary: The changing climate. Terra 102(4): 220–238

    Google Scholar 

  • Flanagan PW & Van Cleve K (1983) Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems. Can. J. For. Res. 13: 795–817

    Google Scholar 

  • Gifford RM (1992) Implications of the globally increasing atmospheric CO2 concentration and temperature for the Australian terrestrial carbon budget: Integration using a simple model. Aust. J. Bot. 40: 527–543

    Google Scholar 

  • Glückert G (1989) Shore-level displacement of the Baltic during the Ancylus Lake and the Litorina Sea stages (9000 years) in the South and Central Ostrobothnia. Publications of the Department of Quartenary Geology, University of Turku 64: 1–14

  • Gustavsen HG (1980) Talosmetsien kasvupaikkaluokittelu valtapituuden avulla (in Finnish). Summary: Site index curves for conifer stands in Finland. Folia Forestalia 454: 1–31

    Google Scholar 

  • Ilvessalo Y & Ilvessalo M (1975) Suomen metsätyypit metsiköiden luontaisen kehitys-ja puuntuottokyvyn valossa, Summary: The forest types of Finland in the light of natural development and yield capacity of forest stands. Acta For. Fenn. 144: 1–101

    Google Scholar 

  • Jenkinson DS & Rayner JH (1977) The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci. 123: 298–305

    Google Scholar 

  • Johnson DW(1995) Role of carbon in the cycling of other nutrients in forested ecosystems. In: McFee WW & Kelly JM (Eds) Carbon Forms and Functions in Forest Soils (pp 299–328). Soil Science Society of America Inc., Madison

    Google Scholar 

  • Jongman RH, ter Braak CJF & van Tongeren OFR (1987) Data Analysis in Community and Landscape Ecology. Pudoc, Wageningen

  • Kellomäki S & Kolström M(1992) Simulation of tree species composition and organic matter accumulation in Finnish boreal forests under changing climatic conditions. Vegetatio 102: 47–68

    Google Scholar 

  • Kira T & Shidei T (1967) Primary production and turnover of organic matter in different forest ecosystems of the western Pacific. Jap. J. Ecol. 17: 70–87.

    Google Scholar 

  • Kirschbaum MUF (1993) A modelling study of the effects of changes in atmospheric CO2 concentration, temperature and atmospheric nitrogen input on soil organic carbon storage. Tellus 45B: 321–334

    Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic carbon storage. Soil Biol. Biochem. in press.

  • Kalela A (1961) Waldvegetationszonen Finnlands und ihre Klimatischen Paralleltypen. Archivum Sociatatis Zoologicae Botanicae Fennicae Vanamo 16 Suppl.: 65–83

    Google Scholar 

  • Koivisto P (1970) Regionality of forest growth in Finland. Commun. Inst. For. Fenn. 71(2): 1–76

    Google Scholar 

  • Kramer B & Becker B (1993) German oak and pine 14C calibration, 7200-9439 BC. Radiocarbon 35(1): 125–135

    Google Scholar 

  • Liski J & Westman CJ (1995) Density of organic carbon in soil at coniferous forest sites in southern Finland. Biogeochemistry 29(3): 183–197

    Google Scholar 

  • Liski J (1995) Variation in soil organic carbon and thicknesses of soil horizons within a boreal forest stand-the effect of trees and implications for sampling. Silva Fennica 29(4): 255–266

    Google Scholar 

  • Liski J & Westman CJ (1997) Carbon storage in forest soil of Finland 2. Size and regional patterns. Biogeochemistry 36: 261–274

    Google Scholar 

  • Meentemeyer V (1978)Macro climate and lignin control of litter decomposition rates. Ecology 59(3): 465–472

    Google Scholar 

  • Melillo JM, Naiman RJ, Aber JD & Eshleman KN (1983) The influence of substrate quality and stream size on wood decomposition dynamics. Oecologia 58: 281–285

    Google Scholar 

  • Mielikäinen K (1985) Koivusekoituksen vaikutus kuusikon rakenteeseen ja kehitykseen, Summary: Effect of an admixture of birch on the structure and development of Norway spruce stands. Commun. Inst. For. Fenn. 133: 1–79

    Google Scholar 

  • Mikola P (1960) Comparative experiment on decomposition rates of forest litter in southern and northern Finland. Oikos 11: 161–166

    Google Scholar 

  • Mitchell JFB, Manabe S, Meleshko V & Tokioka T (1990) Equilibrium climate change-and its implications for the future. In: Houghton JT, Jenkins GJ & Ephraums JJ (Eds) Climate Change, The IPCC Scientific Assessment (pp 131–172). University Press, Cambridge

    Google Scholar 

  • Moore TR (1984) Litter decomposition in a sub-arctic, spruce-lichen woodland in eastern Canada. Ecology 65: 299–308

    Google Scholar 

  • Parton WJ, Schimel DS, Cole CV & Ojima DS (1987) Analysis of factors controlling organic matter levels in great plains grassland. Soil Sci. Soc. Am. J. 51: 1173–1179

    Google Scholar 

  • Pastor J & Post WM (1988) Response of northern forests to CO2-induced climate change. Nature 334: 55–58

    Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ & Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298: 156–159

    Google Scholar 

  • Rastetter EB, Ryan MG, Shaver GR, Melillo JM, Nadelhoffer KJ, Hobbie JE & Aber JD (1991) A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2, climate, and N deposition. Tree Physiol 9: 101–126

    Google Scholar 

  • SaarnistoM (1981) Holocene emergence history and stratigraphy in the area north of the Gulf of Bothnia. Annales Academiae Scientiarum Fennicae A III. 130: 1–42

    Google Scholar 

  • Schlesinger WH (1977) Carbon balance in terrestrial detritus. Ann. Rev. Ecol. Syst. 8: 51–81

    Google Scholar 

  • Smith TM, Shugart HH, Bonan GB & Smith JB (1992) Modelling potential response of vegetation to global climate change. Adv. Ecol. Res. 22: 93–116

    Google Scholar 

  • Starr MR (1991) Soil formation and fertility along a 5000 year chronosequence. In: Pulkkinen E (Ed) Environmental Geochemistry in Northern Finland (pp 99–104). Geological Survey of Finland, Special Paper 9, Helsinki

  • Tamm CO & Östlund HG (1960) Radiocarbon dating on soil humus. Nature 185: 706–707

    Google Scholar 

  • Tamm CO & Holmen H (1967) Some remarks on soil organic matter Turn-over in Swedish podzol profiles. Meddelelser fra det Norske skogforsöksvesen 23(hefte 85): 69–88

    Google Scholar 

  • Ter Braak CJF (1988) CANOCO-a FORTRAN program for canonical community ordination by partial, detrended, canonical correspondence analysis, principal components analysis and redundancy analysis (version 2.1). Technical Report LWA-88-02, Groep Landbouwwiskunde, Wageningen

  • Townsend AR, Vitousek PM & Holland EA(1992) Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures. Climatic change 22: 293–303

    Google Scholar 

  • Van Cleve K & Powers RF (1995) Soil carbon, soil formation, and ecosystem development. In: McFee WW & Kelly JM (Eds) Carbon Forms and Functions in Forest Soils (pp 155–200). Soil Science Society of America Inc., Madison

    Google Scholar 

  • Van der Maarel E (1979) Transformation of cover-abundance values in phytosociology and its effects on community similarity. Vegetatio 39(2): 97–114

    Google Scholar 

  • Viro PJ 1947 Metsämaan raekoostumus ja viljavuus varsinkin maan kivisyyttä silmällä pitäen, Summary: Themechanical composition and fertility of forest soil taking into consideration especially the stoniness of the soil. Commun. Inst. For. Fenn. 35(2): 1–115

    Google Scholar 

  • Viro PJ 1951 Nutrient status and fertility of forest soil, I. Pine stands. Commun. Inst. For. Fenn. 39(4): 1–54

    Google Scholar 

  • Watson RT, Rodhe H, Oeschger H & Siegenthaler U (1990) Graanhouse gases and aerosols. In: Houghton JT, Jenkins GJ & Ephraums JJ (Eds) Climate Change, The IPCC Scientific Assessment (pp 1–40). University Press, Cambridge

    Google Scholar 

  • Westman CJ (1990) Metsämaan fysikaaliset ja fysikaalis-kemialliset ominaisuudet CT-OMaT kasvupaikkasarjassa, Summary: Soil physical and physico-chemical properties of Finnish upland forest sites. Silva Fennica 24(1): 141–158

    Google Scholar 

  • Westman CJ (1995) A simple device for sampling of volumetric forest soil cores. Silva Fennica 29(3): 247–251

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LISKI, J., WESTMAN, J. Carbon storage in forest soil of Finland. 1. Effect of thermoclimate. Biogeochemistry 36, 239–260 (1997). https://doi.org/10.1023/A:1005711024022

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005711024022

Navigation