, Volume 115, Issue 3, pp 355–373

To Give a Surprise Exam, Use Game Theory


DOI: 10.1023/A:1005012607804

Cite this article as:
SOBER, E. Synthese (1998) 115: 355. doi:10.1023/A:1005012607804


This paper proposes a game-theoretic solution of the surprise examination problem. It is argued that the game of “matching pennies” provides a useful model for the interaction of a teacher who wants her exam to be surprising and students who want to avoid being surprised. A distinction is drawn between prudential and evidential versions of the problem. In both, the teacher should not assign a probability of zero to giving the exam on the last day. This representation of the problem provides a diagnosis of where the backwards induction argument, which “proves” that no surprise exam is possible, is mistaken.

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations


There are no affiliations available