Skip to main content
Log in

Transcrystalline morphology and mechanical properties in polypropylene composites containing cellulose treated with sodium hydroxide and cellulase

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To evaluate the transcrystalline effects caused by various fibers, which were untreated, or treated with sodium hydroxide and cellulase, isothermal crystallization was performed. It was observed that the untreated and cellulase-treated cellulose fibers (cellulose I) had a nucleating ability to transcrystallize at PP matrix. Especially, cellulose fibers treated with Sodium hydroxide (cellulose II) transcystallized at PP matrix. This result was different from other's. Cellulose fibers also transcrystallized at PP/MAH-PP matrix irrespective of the type of cellulose crystalline structure. In PP/MAH-PP/CELL system, MAH-PP was located around the fiber surface at initial crystallization time, but was gradually expelled from that with the increase of crystallization time, and existed at outer boundaries of transcrstalline region at the final crystallization time. These phenomena were confirmed by IR-IRS spectra. The tensile strength of PP/CELL and PP/MAH-PP/CELL composites decreased with the increase of isothermal crystallization time. Therefore, it is thought that transcrystallinity gives rise to negative effect of tensile strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. AMIN, A. J. MAASDHAH and A. M. USMANI, in "Polymer Science and Technology, Vol. 33," edited by E. Carraher, Jr. and L. H. Spherling (Plenum, New York, 1986) p. 29.

    Google Scholar 

  2. P. ZADORECKI and A. J. MICHELL, Polym. Compos. 10 (1989) 2.

    Google Scholar 

  3. R. G. RAJ and B. V. KOKTA, Polym. Eng. Sci. 31(18) (1991) 1358.

    Google Scholar 

  4. J. M. FELIX and P. GATENHOLM, J. Appl. Polym. Sci. 42 (1991) 609.

    Google Scholar 

  5. R. T. WOODHAMS, G. THOMAS and D. K. RODGERS, Poly. Eng. Sci. 24 (1984) 1166.

    Google Scholar 

  6. P. BATAILLE, L. RICHARD and S. SAPIEHA, Polym. Compos. 10(2) (1989) 103.

    Google Scholar 

  7. C. JOLY, R. GAUTHIER and B. CHABERT, Compos. Sci. Tech. 56 (1996) 761.

    Google Scholar 

  8. J. M. FELIX and P. GATENHOLM, Polym. Compos. 14(6) (1993) 449.

    Google Scholar 

  9. A. CHR. ALBERTSSON, CHR. SARES and S. KARLSSON, Acta Polymer 44 (1993) 246.

    Google Scholar 

  10. R.G. RAJ and B.V. KOKTA, J. Appl. Polym. Sci. 38 (1989) 1987.

    Google Scholar 

  11. S. TAKASE and N. SHIRASHI, ibid. 37 (1989) 645.

    Google Scholar 

  12. J. M. FELIX and P. GATENHOLM, ibid. 50 (1993) 699.

    Google Scholar 

  13. J. R. COLLIER, M. LU, M. FAHRURROZI and B. J. COLLIER, ibid. 61 (1996) 1423.

    Google Scholar 

  14. E. JENCKEL, E. TEEGA and W. FLINRICKS, Kolloid-z 129 (1952) 19.

    Google Scholar 

  15. M. AVELLA, E. MARTUSCELLI, B. PASCUCCI and M. RAIMO, Polym. Eng. Sci. 32 (1992) 383.

    Google Scholar 

  16. J. PETERMANN, G. BROZA, U. RIECK and A. KAWAGUCHI, J. Mater. Sci. 22 (1987) 1477.

    Google Scholar 

  17. R. L. BRADY and R. S. PORTER, J. Appl. Polym. Sci. 39 (1990) 1873.

    Google Scholar 

  18. R. L. HAGENSON, D. F. REGISTER and D. A. SOULES, SAMPE 34(2) (1989) 2255.

    Google Scholar 

  19. M. MASUOKA, Int. J. Adhes. Adhesives 1 (1981) 256.

    Google Scholar 

  20. S. F. XAVIER and Y. N. SHARMA, Angew. Makromol. Chem. 127 (1984) 145.

    Google Scholar 

  21. T. BESSELL and J. B. SHORTALL, J. Mater. Sci. 10 (1975) 2035.

    Google Scholar 

  22. D. KNAPPERT, H. GRETHLEIN and A. CONVERSE, Biotechnol. Bioeng. 22 (1984) 1449.

    Google Scholar 

  23. T. J. KIM, Y. M. LEE and S. S. IM, Polym. Comp. 18 (1997) 3.

    Google Scholar 

  24. D. G. GRAY, Polym. Lett. Ed. 12 (1974) 509.

    Google Scholar 

  25. D. T. QUILLIN, D. F. CAULFIELD and J. A. KOUTSKY, J. Mater. Sci. 50 (1993) 1187.

    Google Scholar 

  26. D. G. GRAY, J. Polym. Sci., Polym. Lett. Ed. 12 (1974) 509.

    Google Scholar 

  27. Idem., ibid. 12 (1974) 655.

    Google Scholar 

  28. J. L. THOMASON and A. A. VAN ROOYEN, J. Mater. Sci. 27 (1992) 889.

    Google Scholar 

  29. M. J. FOLKES and S. T. HARDWICK, J. Mater. Sci. Lett. 3 (1984) 1071.

    Google Scholar 

  30. S. T. HARDWICK Idem., ibid. 3 (1987) 656.

    Google Scholar 

  31. M. G. HUDSON and W. J. MCGILL, J. Polym. Sci. Polym. Chem. Ed. 22 (1984) 3571.

    Google Scholar 

  32. J. C. WITTMAN and B. LOTZ, Prog. Polym. Sci. 15 (1990) 909.

    Google Scholar 

  33. J. M. FELIX and P. GATENHOLM, J. Mater. Sci. 29 (1994) 3043.

    Google Scholar 

  34. A. T. JONES, J. M. AIZLEWOOD and D. R. BECKETT, Macromol. Chem. 75 (1964) 134.

    Google Scholar 

  35. C. PASSINGHAM, P. J. HENDRA, M. E. A. CUDBY, V. ZICHY and M. WELLER, Eur. Polym. J. 26(6) (1990) 631.

    Google Scholar 

  36. S. VLEESHOUWERS, Polymer 38(13) (1997) 3213.

    Google Scholar 

  37. ROBERT GRECO, GOIUSEPPE RAGOSTA, J. Mater. Sci. 23 (1988) 4171.

    Google Scholar 

  38. T. BESSELL, D. HULL and J.B. SHORTALL, Faraday Spec. Disc., Chem Soc. 2 (1972) 137.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Son, SJ., Lee, YM. & Im, SS. Transcrystalline morphology and mechanical properties in polypropylene composites containing cellulose treated with sodium hydroxide and cellulase. Journal of Materials Science 35, 5767–5778 (2000). https://doi.org/10.1023/A:1004827128747

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004827128747

Keywords

Navigation