Skip to main content
Log in

Synthesis, microstructure and properties characterization of disintegrated melt deposited Mg/SiC composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In the present study, elemental and silicon carbide reinforced magnesium materials were synthesized using an innovative disintegrated melt deposition method followed by hot extrusion. Microstructural characterization studies revealed the presence of minimal porosity and completely recrystallized matrix in all the unreinforced and reinforced samples. In the case of reinforced magnesium samples, a fairly uniform distribution of SiC particulates and good SiC-Mg interfacial integrity was realized. The results of microhardness measurements revealed an increase in the brittleness of the SiC-Mg interfacial region with an increase in the amount of SiC particulates. Results of physical and mechanical properties characterization revealed that the increasing presence of SiC particulates led to an increase in hardness and elastic modulus, does not affect 0.2% yield strength and reduces the ultimate tensile strength, ductility, work for fracture and coefficient of thermal expansion. An attempt is made to correlate the results of physical and mechanical properties testing with that of the microstructural characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. J. Lloyd, Int. Mat. Reviews 39(1) (1994) 1.

    Google Scholar 

  2. D. M. Lee, B. K. Suh, B. G. Kim, J. S. Lee and C. H. Lee, Mat. Sci. Tech. 13 (1997) 590.

    Google Scholar 

  3. A. Luo, Metall. Mater. Trans. A26 (1995) 2445.

    Google Scholar 

  4. J. Lo and G. Carpenter, in “Conf. Proceedings of ICCE/5,” edited by D. Hui (Las Vegas, July 5-11, 1998) p. 526.

  5. V. Laurent, P. Jarry, G. Regazzoni and D. Apelian, J. Mat. Sci. 27 (1992) 4447.

    Google Scholar 

  6. M. Gupta, M. O. Lai and C. Y. Soo, Mat. Sci. and Eng. A210 (1996) 114.

    Google Scholar 

  7. Powder Diffraction File, International Center for Diffraction Data, 1601 Park Lane, Swarthmore, PA, USA, 1991.

  8. V. C. Nardone and K. W. Prewo, Scr. Metall. 20 (1986) 43.

    Google Scholar 

  9. W. S. Miller and F. J. Humphreys, Scr. Metall. et Mater. 25 (1991) 2623.

    Google Scholar 

  10. P. G. Shewmon, “Transformation in Metals” (McGraw-Hill Book Company, New York, USA, 1969) p. 69.

    Google Scholar 

  11. R. E. Reed-Hill, “Physical Metallurgy Principles,” 2nd ed. (D. Van Nostrand Company, New York, USA, 1964) pp. 267, 753.

    Google Scholar 

  12. M. Gupta, F. Mohamed, E. Lavernia and T. S. Srivatsan, J. Mat. Sci. 28 (1993) 2245.

    Google Scholar 

  13. M. Gupta, F. A. Mohamed and E. J. Lavernia, Metall. Trans. 23A (1992) 845.

    Google Scholar 

  14. M. Gupta, R. Sikand and A. K. Gupta, Scr Met et Mater. 30(10) (1994) 1343.

    Google Scholar 

  15. Z. G. Wang, S. Li and L. Sun, Key Eng. Mater. 104-107 (1995) 729.

    Google Scholar 

  16. M. K. Surappa, J. Mat. Sci. Lett. 12 (1993) 1272.

    Google Scholar 

  17. M. Gupta, I. A. Ibrahim, F. Mohamed and E. Lavernia, J. Mat. Sci. 26 (1991) 6673.

    Google Scholar 

  18. B. Inem and G. Pollard, ibid. 28 (1993) 4427.

    Google Scholar 

  19. A. L. Geiger and M. Jackson, Adv. Mat. Proc. 136(7) (1989) 23.

    Google Scholar 

  20. C. J. Smithells, “Metals Reference Book,” 5th ed. (Butterworths & Co. Ltd, London, 1976).

    Google Scholar 

  21. J. F. Shackelford, W. Alexander and J. S. Park, “CRC Materials Science and Engineering Handbook” (CRC Press Inc., 1994) p. 304.

  22. M. Gupta and S. Ling, Mater. and Design 18(3) (1997) 139.

    Google Scholar 

  23. N. Christman and S. Suresh, Acta. Metall. 36 (1988) 1691.

    Google Scholar 

  24. G. E. Fougere, L. Riester, M. Ferber, J. R. Weertman and R. W. Siegel, Mater. Sci. and Eng. A, 204 (1995) 1.

    Google Scholar 

  25. A. R. Boccaccini, G. Ondracek, P. Mazilu and D. Windelberg, J. Mech. Behav. Mater. 4 (1993) 119.

    Google Scholar 

  26. M. Gupta and M. K. Surappa, Key Eng. Mater. 104-107, Part 1 (1995) 259.

    Google Scholar 

  27. ASM Handbook, “Properties and Selection: Nonferrous Alloys and Special-purpose Materials, Vol. 2” (ASM International, 1990) p. 1132.

  28. G. F. Bocchini, Int. J. of Powder Metallurgy 22(3) (1986) 185.

    Google Scholar 

  29. R. D. Payne, A. L. Moran and R. C. Cammarata, Scr. Metall. et Mater. 29 (1993) 907.

    Google Scholar 

  30. D. L. MCDanels, Metall. Trans. A16 (1985) 1105.

    Google Scholar 

  31. M. R. Krishnadev, R. Angers, C. G. Krishnadas Nair and G. Huard, J. Met. 45(8) (1993) 52.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, M., Lai, M. & Saravanaranganathan, D. Synthesis, microstructure and properties characterization of disintegrated melt deposited Mg/SiC composites. Journal of Materials Science 35, 2155–2165 (2000). https://doi.org/10.1023/A:1004706321731

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004706321731

Keywords

Navigation