Skip to main content
Log in

Dynamical Localization II with an Application to the Almost Mathieu Operator

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Several recent works have established dynamical localization for Schrödinger operators, starting from control on the localization length of their eigenfunctions, in terms of their centers of localization. We provide an alternative way to obtain dynamical localization, without resorting to such a strong condition on the exponential decay of the eigenfunctions. Furthermore, we illustrate our purpose with the almost Mathieu operator, H θ, λ, ω=−Δ+λ cos(2π(θ+)), λ≥15 and ω with good Diophantine properties. More precisely, for almost all θ, for all q>0, and for all functions ψ∈ℓ2(\(\mathbb{Z}\)) of compact support, we show that\(\mathop {\sup }\limits_t \left\langle {e^{ - itH_{\theta ,\lambda ,\omega } } \psi ,\left| X \right|^q e^{ - itH_{\theta ,\lambda ,\omega } } \psi } \right\rangle < C\psi\)The proof applies equally well to discrete and continuous random Hamiltonians. In all cases, it uses as input a repulsion principle of singular boxes, supplied in the random case by the multi-scale analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Aizenman, Localization at weak disorder: some elementary bounds, Rev. Math. Phys. 6:1163–1182 (1994).

    Google Scholar 

  2. J. Avron and B. Simon, Almost periodic Schrödinger operators II. The integrated density of states, Duke Math. J. 50:3695–3791 (1983).

    Google Scholar 

  3. J. Bellissard, A. van Elst, and H. Schulz-Baldes, The noncommutative geometry of the quantum Hall effect, J. Math. Phys. 35:5373–5451 (1994).

    Google Scholar 

  4. R. Carmona and J. Lacroix, Spectral Theory of Random Schrödinger Operator (Birkhäuser, 1990).

  5. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger Operators (Springer-Verlag, 1987).

  6. S. De Bièvre and G. Forni, Transport properties of kicked and quasiperiodic Hamiltonians, J. Stat. Physics 90:1201–1223 (1998).

    Google Scholar 

  7. R. Del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum IV: Hausdorff dimensions, rank one perturbations and localization, J. d'Analyse Math. 69:153–200 (1996).

    Google Scholar 

  8. A. von Dreifus and A. Klein, A new proof of localization in the Anderson tight binding model, Commun. Math. Phys. 124:285–299 (1989).

    Google Scholar 

  9. J. Fröhlich and T. Spencer, Absence of diffusion with Anderson tight binding model for large disorder or low energy, Commun. Math. Phys. 88:151–184 (1983).

    Google Scholar 

  10. J. Fröhlich, T. Spencer, and P. Wittner, Localization for a class of one-dimensional quasi-periodic Schrödinger operators, Commun. Math. Phys. 132:5–25 (1990).

    Google Scholar 

  11. F. Germinet, Localisation dynamique pour des opárateurs de Schrödinger aléatoires ou quasi-périodiques, PHD Thesis, Paris VII (1998).

  12. F. Germinet and S. De Bièvre, Dynamical localization for discrete and continuous random Schrödinger operators, Commun. Math. Phys. 194:323–341 (1998).

    Google Scholar 

  13. A. Y. Gordon, S. Jitomirskaya, Y. Last, and B. Simon, Duality and singular continuous spectrum in the almost Mathieu equation, Acta. Math. 178:169–183 (1997).

    Google Scholar 

  14. S. Jitomirskaya, Anderson localization for the almost Mathieu equation: A non pertubative proof, Commun. Math. Phys. 165:49–57 (1994).

    Google Scholar 

  15. S. Jitomirskaya, Anderson localization for the almost Mathieu equation: II. Point spectrum for λ>2, Commun. Math. Phys. 168:563–570 (1995).

    Google Scholar 

  16. S. Jitomirskaya, Continuous spectrum and uniform localization for ergodic Schrödinger operators, J. Funct. Anal. 145:312–322 (1997).

    Google Scholar 

  17. S. Jitomirskaya and Y. Last, Anderson localization for the almost Mathieu equation, III. Semi-uniform localization, continuity of gaps, and measure of the spectrum, Commun. Math. Phys. 195:1–14 (1998).

    Google Scholar 

  18. G. Jona-Lasinio, F. Martinelli, and E. Scoppola, Multiple tunnelings in d-dimensions: A quantum particle in a hierarchical potential, Ann. Inst. Henri Poincaré 42:73–108 (1985).

    Google Scholar 

  19. H. Kunz, and B. Souillard, Sur le spectre des opérateurs aux différences finies aléatoires, Commun. Math. Phys. 78:201–246 (1980).

    Google Scholar 

  20. Y. Last, Quantum dynamics and decomposition of singular continuous spectrum, J. Funct. Anal. 142:406–445 (1996).

    Google Scholar 

  21. L. Pastur and A. Figotin, Spectra of Random and Almost-Periodic Operators (Springer-Verlag, 1992).

  22. B. Simon, Schrödinger semi-groups, Bull. Amer. Math. Soc. 7:447–526 (1982).

    Google Scholar 

  23. Ya. G. Sinai, Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential, J. Stat. Phys. 46:861–909 (1987).

    Google Scholar 

  24. T. Spencer, Localization for random and quasiperiodic potentials, J. Stat. Phys. 51:1009–1019 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Germinet, F. Dynamical Localization II with an Application to the Almost Mathieu Operator. Journal of Statistical Physics 95, 273–286 (1999). https://doi.org/10.1023/A:1004533629182

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004533629182

Navigation