Skip to main content
Log in

Leaf breakdown in a regulated desert river: Colorado River, Arizona, U.S.A.

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We compared processing rates (k d) for leaves of the native willow (Salix exigua Nutt.) and cottonwood (Populus fremontii Wats.) to those of the non-native salt cedar (Tamarix chinensis Lour.) in the regulated Colorado River, U.S.A. Leaf packs of each species were incubated at Lees Ferry, approximately 26 km below Glen Canyon Dam, Arizona. Leaf packs were processed at 2, 21, 46, 84 and 142-d intervals. Water temperatures remained relatively constant (10 °C, SE ± 1 °C) during the study. There were significant differences in processing rates between species, with P. fremontii showing the fastest breakdown. After 142 d, only 20% of the P. fremontii leaf mass remained, whereas 30% and 52% of leaf masses remained for T. chinensis and S. exigua, respectively. The k d value for P. fremontii was 0.0062 compared to 0.0049 and 0.0038 for T. chinensis and S. exigua, respectively. Invertebrate colonization was not significantly different between native and non-native plant species with oligochaetes the most abundant animal colonizing the leaf packs. Dual stable isotope analysis showed that leaf material was not the primary food for invertebrates associated with leaf packs. Processing rates for all leaf types were slow in the regulated Colorado River compared to rates reported in many other systems. This is likely due to the lack of caddisfly and stonefly shredders and perhaps slow metabolic rates by microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed, A. F., T. Yoshida & T. Okuda, 1994. Tannins of Tamaricaceous plants. V. New dimeric, trimeric and tetrameric ellagitannins from Reaumuria hirtella. Chem. Pharm. Bull. 42: 246–253.

    Google Scholar 

  • Allan, J. D., 1996. Stream Ecology: Structure and Function of Running Waters. Chapman and Hill, New York: 388 pp.

    Google Scholar 

  • Angradi, T. R., 1994. Trophic linkages in the lower Colorado River: multiple stable isotope evidence. J. n. am. Benthol. Soc. 13: 479–495.

    Google Scholar 

  • Angradi, T. R., 1996. Interhabitat variation in benthic community structure, function and organic matter storage in three Appalachian headwater streams. J. n. am. Benthol. Soc. 15: 42–63.

    Google Scholar 

  • Benfield, E. F., 1996. Leaf breakdown in stream ecosystems. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press, San Diego: 579–589.

    Google Scholar 

  • Blinn, D. W. & G. A. Cole, 1991. Algal and invertebrate biota in the Colorado River: comparison of pre-and post-dam conditions. In Committee on Glen Canyon Environmental Studies (eds), Colorado River Ecology and Dam Management. National Academy Press, Washington, D.C.: 102–123.

    Google Scholar 

  • Blinn, D. W., J. P. Shannon, P. L. Benenati & K. P. Wilson, 1998. Algal ecology in stream communities: The Colorado River below Gen Canyon Dam, Arizona. J. Phycol. 34: 734–740.

    Google Scholar 

  • Blinn, D. W., J. P. Shannon, K. P. Wilson, C. O'Brien & P. L. Benenati, 1999. Response of benthos and organic drift to a controlled flood. In Webb, R. H., J. C. Schmidt, G. R. Marzolf & R. A. Valdez (eds), The Controlled Flood in Grand Canyon. Geophysical Monograph #110. Amer. Geophys. Union, Washington, D.C.: 259–272.

    Google Scholar 

  • Boulton, A. J. & P. J. Boon, 1991. A review of methodologies used to measure leaf litter decomposition in lotic environments: time to turn over a new leaf? Aust. J. mar. Freshwat. Res. 42: 1–43.

    Google Scholar 

  • Clesceri, L. S., A. E Greenberg & A. D. Eaton, 1998. Standard Methods for the Examination of Water and Wastewater. 20th edn. American Public Health Association, Inc., New York.

    Google Scholar 

  • Cornelissen, J. H. C., 1996. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84: 573–582.

    Google Scholar 

  • Cowan, C. A., M. W. Oswood, C. A. Buttimore & P. W. Flanagan, 1983. Processing and macroinvertebrate colonization of detritus in an Alaskan subarctic stream. Holarct. Ecol. 6: 340–348.

    Google Scholar 

  • Fisher, S. G. & G. E. Likens, 1973. Energy flow in Bear Brook, New Hampshire: an integrative approach to stream ecosystem metabolism. Ecol. Monogr. 43: 421–439.

    Google Scholar 

  • Gregory, S. V., F. J. Swanson & W. A. McKee, 1991. An ecosystem perspective of riparian zones. BioScience 41: 540–551.

    Google Scholar 

  • Hershey, A. E. & B. J. Peterson, 1996. Stream food webs. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic Press, San Diego: 511–532.

    Google Scholar 

  • Irons, J. G., M. W. Oswood, R. J. Stout & C. M. Pringle, 1994. Latitudinal patterns in leaf litter breakdown: is temperature really important? Freshwat. Biol. 32: 401–411.

    Google Scholar 

  • Malmqvist, B. & D. Oberle, 1995. Macroinvertebrate effects on leaf pack decomposition in a lake outlet stream in Northern Sweden. Nordic J. Freshwat. Res. 70: 12–20.

    Google Scholar 

  • Minshall, G. W., 1978. Autotrophy in stream ecosystems. BioScience 28: 767–771.

    Google Scholar 

  • Petersen, R. C., K. W. Cummins & G. M. Ward, 1989. Microbial and animal processing of detritus in a woodland stream. Ecol. Monogr. 59: 21–39.

    Google Scholar 

  • Robinson, C. T., M. O. Gessner & J. V. Ward, 1998. Leaf breakdown and associated macroinvertebrates in alpine glacial streams. Freshwat. Biol. 40: 215–228.

    Google Scholar 

  • Schade, J. D. & S. G. Fisher, 1997. Leaf litter in a Sonoran desert stream ecosystem. J. n. am. Benthol. Soc. 16: 612–626.

    Google Scholar 

  • Sedell, J. R., F. J. Triska & N. S. Triska, 1975. The processing of conifer and hardwood leaves in two coniferous forest systems. I. Weight loss and associated invertebrates. Verh. int. Ver. Limnol. 19: 1617–1627.

    Google Scholar 

  • Shannon, J. P., D. W. Blinn, P. L. Benenati & K. P. Wilson, 1996. Organic drift in a regulated desert river. Can. J. Fish. aquat. Sci. 53: 1360–1329.

    Google Scholar 

  • Shannon, J. P., D. W. Blinn, T. McKinney, E. P. Benenati, K.P. Wilson & C. O'Brien, 2000. Aquatic food base response to the 1996 Spike Flow below Glen Canyon Dam: Colorado River, Arizona. Ecol. Appl. In press.

  • Shannon, J. P., D. W. Blinn, K. P. Wilson, P. L. Benenati, G. A. Haden & K. E. Pomeroy, 1998. Monitoring the aquatic food base in the Colorado River, Arizona during fiscal years 1998 and 1999. Annual Report to Grand Canyon Monitoring and Research Center, Flagstaff, AZ.

  • Short, R. A. & J. V. Ward, 1980. Leaf litter processing in a regulated Rocky Mountain stream. Can. J. Fish. aquat. Sci. 37: 123–127.

    Google Scholar 

  • Stanford, J. A. & J. V. Ward, 1991. Limnology of Lake Powell and the chemistry of the Colorado River. In Committee on Glen Canyon Environmental Studies (eds), Colorado River Ecology and Dam Management. National Academy Press, Washington, D.C.: 75–101.

    Google Scholar 

  • Stein, B. A. & S. R. Flack, 1996. America's least wanted: alien species invasions of U.S. ecosystems. The Nature Conservancy, Arlington, Virginia.

    Google Scholar 

  • Stevens, L. E., 1989. Mechanisms of riparian plant community organization and succession in the Grand Canyon, Arizona. PhD. Dissertation. Northern Arizona University. Flagstaff, AZ.

    Google Scholar 

  • Stevens, L. E., J. P. Shannon & D. W. Blinn, 1997. Colorado River benthic ecology in Grand Canyon, Arizona, U.S.A.: dam, tributary and geomorphological influences. Reg. Riv. 13: 129–149.

    Google Scholar 

  • Sublette, J. E., L. E. Stevens & J. P. Shannon, 1998. Chironomids (Diptera) of the Colorado River, Grand Canyon, U.S.A. I. Systematics and ecology. Great Basin Nat. 58: 97–146.

    Google Scholar 

  • SYSTAT: Data, Version 5.2 edition. Evanston, 1992. Evanston IL: SYSTAT, Inc.: 724 pp.

  • Wallace, J. B., Webster, J. R. & J. L. Meyer, 1995. Influence of log additions on physical and biotic characteristics of a mountain stream. Can. J. Fish. aquat. Sci. 52: 2120–2137.

    Google Scholar 

  • Webb, R. H., D. L. Wegner, E. D. Andrews, R. A. Valdez & D. T. Patten, 1999. In Webb, R. H., J. C. Schmidt, G. R. Marzolf & R. A. Valdez (eds), The Controlled Flood in Grand Canyon. Geophysical Monograph #110. Amer. Geophys. Union, Washington, D.C.: 1–22.

    Google Scholar 

  • Webster, J. R. & J. L. Meyer, 1997. Stream organic matter budgets: introduction. In Webster, J. R. & J. L. Meyers (eds), Stream Organic Matter Budgets. J. n. am. Benthol. Soc. 16: 74–78.

  • Yoshida, T., A. F. Ahmed & T. Okuda, 1993. Tannins of Tamaricaceous plants. III. New dimeric hydrolyzable tannins from Reaumuria hirtella. Chem. Pharm. Bull. 41: 679–679.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pomeroy, K.E., Shannon, J.P. & Blinn, D.W. Leaf breakdown in a regulated desert river: Colorado River, Arizona, U.S.A.. Hydrobiologia 434, 193–199 (2000). https://doi.org/10.1023/A:1004081309986

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1004081309986

Navigation