Skip to main content
Log in

Oxidative Myocytes of Heart and Skeletal Muscle Express Abundant Sarcomeric Mitochondrial Creatine Kinase

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Sarcomeric mitochondrial creatine kinase catalyzes the reversible transfer of a high energy phosphate between ATP and creatine. To study cellular distribution of the kinase, we performed immunocytochemical studies using a peptide antiserum specific for the kinase protein. Our results demonstrated that the sarcomeric mitochondrial creatine kinase gene is abundantly expressed in heart and skeletal muscle, with no protein detected in other tissues examined, including brain, lung, liver, spleen, kidney, bladder, testis, stomach, intestine, and colon. RNA blot study showed that there is no detectable expression of the kinase mRNA in the thymus gland. In heart and skeletal muscle, the kinase protein is expressed in atrial and ventricular cardiomyocytes and a subpopulation of skeletal myofibres. In skeletal muscle, fast myosin heavy chain co-localization studies demonstrated that the sarcomeric mitochondrial creatine kinase is highly expressed in type 1, slow-oxidative and type 2A, fast-oxidative-glycolytic myofibres. We conclude that the kinase gene is abundantly expressed in oxidative myocytes of heart and skeletal muscle and may contribute to oxidative capacity of these cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Bessman SP, Carpenter CL (1985) The creatine-creatine phosphate energy shuttle. Annu Rev Biochem 54: 831-862.

    Google Scholar 

  • Biermans W, Bernaert I, DeBie M, Nijs B, Jacob W (1989) Ultrastructural localization of creatine kinase activity in the contact sites between inner and outer mitochondrial membranes of rat myocardium. Biochim Biophys Acta 974: 74-80.

    Google Scholar 

  • Blake MS, Johnston KH, Russell-Jones GJ, Gotschlich EC (1984) A rapid, sensitive method for detection of alkaline phosphataseconjugated antibody onWestern blots. Anal Biochem 136(1): 175-179.

    Google Scholar 

  • Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248-254.

    Google Scholar 

  • Brdiczka D, Kaldis P, Wallimann T (1994) In vitro complex formation between the octamer of mitochondrial creatine kinase and porin. J Biol Chem 269(44): 27640-27644.

    Google Scholar 

  • Clark JF, Khuchua Z, Boehm E, Ventura-Clapier R (1994) Creatine kinase activity associated with the contractile proteins of the guineapig carotid artery. J Muscle Res Cell Motil 15: 432-439.

    Google Scholar 

  • Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162: 156-159.

    Google Scholar 

  • DiMauro S, Bonilla E, Zeviani M, Nakagawa M, Devivo DC (1984) Mitochondrial myopathies. Annu Neurol 17(6): 521-538.

    Google Scholar 

  • Friedman DL, Perryman MB (1991) Compartmentation of multiple forms of creatine kinase in the distal nephron of the rat kidney. J Biol Chem 266(33): 22404-22410.

    Google Scholar 

  • Fritz-Wolf K, Schnyder T, Wallimann T, Kabsch W (1996) Structure of mitochondrial creatine kinase. Nature 381: 341-345.

    Google Scholar 

  • Haas RC, Strauss AW (1990) Separate nuclear genes encode sarcomere-specific and ubiquitous human mitochondrial creatine kinase isoenzymes. J Biol Chem 265(12): 6921-6927.

    Google Scholar 

  • Hossle JP, Schlegel J, Wegmann G, Wyss M, Bohlen P, Eppenberger HM, Wallimann T, Perriard JC (1988) Distinct tissue specific mitochondrial creatine kinases from chicken brain and striated muscle with a conserved CK framework. Biochem Biophys Res Commun 151(1): 408-416.

    Google Scholar 

  • Howald H (1982) Training-induced morphological and functional changes in skeletal muscle. Int J Sports Med 3: 1-12.

    Google Scholar 

  • Jacobus WE (1985) Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase. Annu Rev Physiol 47: 707-725.

    Google Scholar 

  • Muhlebach SM, Gross M, Wirz T, Wallimann T, Perriard JC, Wess M (1994) Sequence homology and structure predictions of the creatine kinase isoenzymes. Mol Cell Biochem 133-134 245-262.

    Google Scholar 

  • Payne RM, Haas RC, Strauss AW (1991) Structural characterization and tissue-specific expression of the mRNAs encoding isoenzymes from two rat mitochondrial creatine kinase genes. Biochim Biophys Acta 1089: 352-361.

    Google Scholar 

  • Peter JB, Barnard RJ, Edgerton VR, Gillespie CA, Stempel KE (1972) Metabolic profiles of three types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11: 2627-2633.

    Google Scholar 

  • Qin W, Khuchua Z, Klein SC, Strauss AW, Strauss (1997) Elements regulating cardiomyocyte expression of the human sarcomeric mitochondrial creatine kinase gene in transgenic mice. J Biol Chem 272: 25210-25216.

    Google Scholar 

  • Rojo M, Hovius R, Deme RA, Nicolay K, Wallimann T (1991) Mitochondrial creatine kinase mediates contact formation between mitochondrial membranes. J Biol Chem 266: 20290-20295.

    Google Scholar 

  • Saks VA, Khuchua ZA, Kuznetsov AV (1987) Specific inhibition ofATP-ADP translocase in cardiac mytoplasts by antibodies against mitochondrial creatine kinase. Biochem Biophys Acta 891: 138-199.

    Google Scholar 

  • Saks VA, Kuznetsov AV, Kupriyanov VV, Miceli MV, Miceli, Jacobus WE (1985) Creatine kinase of rat heart mitochondria: the demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation. J Biol Chem 260(12): 7757-7764.

    Google Scholar 

  • Saks VA, Vasil'eva E, Belikova YO, Kuznetsov AV, Lyapina S, Petrova L, Perov NA (1993) Retarded diffusion of ADP in cardiomyocyte: possible role of mitochondrial outer membrane and creatine kinase in cellular regulation of oxidative phosphorylation. Biochim Biophys Acta 1144: 134-148.

    Google Scholar 

  • Saks VA, Khuchua ZA, Vasilyeva EV, Belikova OY, Kuznetsov AV (1994) Metabolic compartmentation and substrate channelling in muscle cells: role of coupled creatine kinases in in vivo regulation of cellular respiration — a synthesis. Mol Cell Biochem 133/134: 155-192.

    Google Scholar 

  • Schlegel J, Zurbriggen B, Wegmann G, Wyss M, Eppenberger HM, Wallimann T (1988) Native mitochondrial creatine kinase forms octameric structures. I. Isolation of two interconvertible mitochondrial creatine kinase forms, dimeric and octameric mitochondrial creatine kinase: characterization, localization, and structure-function relationships. J Biol Chem 263(32): 16942-16953.

    Google Scholar 

  • Schnyder T, Engel A, Lustig A, Wallimann T (1988) Native mitochondrial creatine kinase forms octameric structures. II. Characterization of dimers and octamers by ultracentrifugation, direct mass measurements by scanning transmission electron microscopy, and image analysis of single mitochondrial creatine kinase octamers. J Biol Chem 263(32): 16954-16962.

    Google Scholar 

  • Steeghs K, Oerlemans F, Wieringa B (1995) Mice deficient in ubiquitous mitochondrial creatine kinase are viable and fertile. Biochim Biophys Acta 1230: 130-138.

    Google Scholar 

  • Steeghs K, Heerschap A, de Haan A, Ruitenbeek W, Oerlemans F, van Deursen J, Perryman B, Pette D, Bruckwilder M, Koudijs J, Jap P, Wieringa B (1997) Use of gene targeting for compromising energy homeostasis in neuro-muscular tissues: the role of sarcomeric mitochondrial creatine kinase. J Neurosci Methods 71: 29-41.

    Google Scholar 

  • van Deursen J, Heerschap A, Oerlemans F, Ruitenbeek W, Jap P, ter Laak H, Wieringa B (1993) Skeletal muscles of mice deficient in muscle creatine kinase lack burst activity. Cell 74: 621-631.

    Google Scholar 

  • Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem J 281: 21-40.

    Google Scholar 

  • Wegmann G, Huber R, Zanolla E, Eppenberger HM, Wallimann T (1991) Differential expression and localization of brain-type and mitochondrial creatine kinase isoenzymes during development of the chicken retina: Mi-CK as a marker for differentiation of photoreceptor cells. Differentiation 46(2): 77-87.

    Google Scholar 

  • Weiss A, Leiwand LA (1996) The mammalian myosin heavy chain gene family. Annu Rev Cell Dev Biol 12: 417-439.

    Google Scholar 

  • Whitmore I (1978) Histochemical fibre types in striated muscle from the guinea-pig oesophagus. Experientia 34(12): 1632.

    Google Scholar 

  • Yaffe MP (1996) The division and inheritance of mitochondria. Adv Mol Cell Biol 17: 341-350.

    Google Scholar 

  • Yamashita K, Yoshioka T (1991) Profiles of creatine kinase isoenzyme compositions in single muscle fibers of different types. J Muscle Res Cell Motil 12: 37-44.

    Google Scholar 

  • Zak R, Camoretti-Mercado B, Gupta M, Jakovcic S, Shimizu N, Stewart A (1990) Myofibrillar proteins in the developing heart. Ann N Y Acad Sci 588: 216-224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, W., Khuchua, Z., Boero, J. et al. Oxidative Myocytes of Heart and Skeletal Muscle Express Abundant Sarcomeric Mitochondrial Creatine Kinase. Histochem J 31, 357–365 (1999). https://doi.org/10.1023/A:1003748108062

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003748108062

Keywords

Navigation