Skip to main content
Log in

Preparation and Measurement: Two Independent Sources of Uncertainty in Quantum Mechanics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the Copenhagen interpretation the Heisenberg inequality ΔQΔP≥ℏ/2 is interpreted as the mathematical expression of the concept of complementarity, quantifying the mutual disturbance necessarily taking place in a simultaneous or joint measurement of incompatible observables. This interpretation was criticized a long time ago and has recently been challenged in an experimental way. These criticisms can be substantiated by using the generalized formalism of positive operator-valued measures, from which an inequality, different from the Heisenberg inequality, can be derived, precisely illustrating the Copenhagen concept of complementarity. The different roles of preparation and measurement in creating uncertainty in quantum mechanics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. Heisenberg, Z. Phys. 43, 172 (1927).

    Google Scholar 

  2. L. E. Ballentine, Rev. Mod. Phys. 42, 358 (1970).

    Google Scholar 

  3. G. Möllenstedt and C. Jönsson, Z. Phys 155, 472 (1959).

    Google Scholar 

  4. J. H. Shapiro and S. S. Wagner, J. Quant. Electr. QE20, 803 (1984).

    Google Scholar 

  5. N. G. Walker and J. E. Caroll, Electr. Lett. 20, 981 (1984).

    Google Scholar 

  6. H. Rauch, in Les fondements de la mécanique quantique, G. Gruber et al., eds. (25e Cours de perfectionnement de l'Association Vaudoise des Chercheurs en Physique, 1983), p. 330.

  7. G. Badurek, H. Rauch, and D. Tuppinger, Phys. Rev. A 34, 2600 (1986).

    Google Scholar 

  8. E. Arthurs and J. L. Kelly Jr., Bell Syst. Techn. J. 44, 725 (1965).

    Google Scholar 

  9. Y. Yamamoto, S. Machida, S. Saito, N. Imoto, T. Yanagawa, M. Kitagawa, and G. Björk, in Progress in Optics XXVIII, E. Wolf, ed. (Elsevier, Amsterdam, 1990), p. 87.

    Google Scholar 

  10. S. Duerr, T. Nonn, and G. Rempe, Nature 395, 33 (1998).

    Google Scholar 

  11. E. P. Storey, S. M. Tan, M. J. Collett, and D. F. Walls, Nature 375, 368 (1995).

    Google Scholar 

  12. M. O. Scully, B.-G. Englert, and H. Walther, Nature 351, 111 (1991).

    Google Scholar 

  13. E. B. Davies, Quantum Theory of Open Systems (Academic Press, London, 1976).

    Google Scholar 

  14. A. S. Holevo, Probabilistic and Statistical Aspect of Quantum Theory (North-Holland, Amsterdam, 1982).

    Google Scholar 

  15. G. Ludwig, Foundations of Quantum Mechanics (Springer, Berlin, 1983), Vols. I and II.

    Google Scholar 

  16. P. Busch, M. Grabowski, and P. J. Lahti, Operational Quantum Mechanics (Springer, Berlin, 1995).

    Google Scholar 

  17. H. Martens and W. De Muynck, Found. Phys. 20, 255, 357 (1990).

    Google Scholar 

  18. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

    Google Scholar 

  19. W. Heisenberg, The Physical Principles of Quantum Theory (Dover, New York, 1930).

    Google Scholar 

  20. P. Jordan, Erkenntnis 4, 215 (1934).

    Google Scholar 

  21. N. Bohr, in N. Bohr, Collected Works, J. Kalckar, ed. (North-Holland, Amsterdam, 1985), Vol. 6, p. 113.

    Google Scholar 

  22. N. Bohr, in Albert Einstein: Philosopher- Scientist, P. A. Schilpp, ed. (Open Court, La Salle, IL, 1949), p. 199.

    Google Scholar 

  23. E. Scheibe, The Logical Analysis of Quantum Mechanics (Pergamon Press, Oxford, 1973), p. 42.

    Google Scholar 

  24. E. Wigner, in Perspectives in Quantum Theory, W. Yourgrau and A. van der Merwe, eds. (MIT Press, Cambridge, MA, 1971), p. 25.

    Google Scholar 

  25. E. Arthurs and M. Goodman, Phys. Rev. Lett 60, 2447 (1988).

    Google Scholar 

  26. M. G. Raymer, Am. J. Phys. 62, 986 (1994).

    Google Scholar 

  27. H. Martens and W. De Muynck, J. Phys. A Math. Gen. 25, 4887 (1992).

    Google Scholar 

  28. D. M. Appleby, Int. J. Theor. Phys. 37, 1491 (1998).

    Google Scholar 

  29. H. M. Wiseman, Found. Phys. 28, 1619 (1998).

    Google Scholar 

  30. F. R. Gantmacher, Application of the Theory of Matrices (Interscience, New York, 1959).

    Google Scholar 

  31. P. L. Kelley and W. H. Kleiner, Phys. Rev. A 136, 316 (1964).

    Google Scholar 

  32. R. McEliece, The Theory of Information and Coding (Addison- Wesley, London, 1977).

    Google Scholar 

  33. W. M. de Muynck, Found. Phys. 14, 199 (1984).

    Google Scholar 

  34. W. M. de Muynck and H. Martens, Phys. Rev. A 42, 5079 (1990).

    Google Scholar 

  35. W. M. de Muynck, W. W. Stoffels, and H. Martens, Physica B 175, 127 (1991).

    Google Scholar 

  36. H. Martens and W. M. de Muynck, J. Phys. A Math. Gen. 26, 2001 (1993).

    Google Scholar 

  37. W. M. de Muynck and H. Martens, in Symmetry and Structural Properties of Condensed Matter, W. Florek, D. Lipinski, and T. Lulek, eds. (World Scientific, Singapore, 1993), p. 101.

    Google Scholar 

  38. S. V. Dorofeev and J. de Graaf, Indag. Mathem. N.S. 8, 349 (1997).

    Google Scholar 

  39. D. Deutsch, Phys. Rev. Lett. 50, 631 (1983).

    Google Scholar 

  40. M. H. Partovi, Phys. Rev. Lett. 50, 1883 (1983).

    Google Scholar 

  41. K. Kraus, Phys. Rev. D 35, 3070 (1987).

    Google Scholar 

  42. H. Maassen and J. B. M. Uffink, Phys. Rev. Lett. 60, 1103 (1988).

    Google Scholar 

  43. M. Brune, E. Hagley, J. Dreyer, X. Maî tre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 77, 4887 (1996).

    Google Scholar 

  44. Norman F. Ramsey, Molecular Beams (Clarendon Press, Oxford, 1956); reprinted lithographically in Great Brittain from corrected sheets of the first edition in 1963 and 1969.

    Google Scholar 

  45. J. Summhammer, H. Rauch, and D. Tuppinger, Phys. Rev. A 36, 4447 (1987).

    Google Scholar 

  46. B.-G. Englert, M. O. Scully, and H. Walther, Nature 375, 367 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Muynck, W.M. Preparation and Measurement: Two Independent Sources of Uncertainty in Quantum Mechanics. Foundations of Physics 30, 205–225 (2000). https://doi.org/10.1023/A:1003640932686

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003640932686

Keywords

Navigation