Skip to main content
Log in

Interactions of top-down and bottom-up control in planktonic nitrogen cycling

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although our understanding of the complexity of theplankton and microbial food webs has increasedsubstantially over the past decade or two, there hasbeen little appreciation to date of the interactionsbetween top-down (grazing) control and bottom-up(nutrient supply) control on the structure andnutrient cycling processes within these webs. Thequality of nutrient supply, both in terms of therelative proportion of inorganic: organic nitrogen,as well as the relative proportion of inorganicnitrogen substrates has a direct impact on rates ofnitrogen uptake, and ultimately on the relativecomposition of phytoplankton and bacteria. At thesame time, grazing by microzooplankton andmacrozooplankton also influences both thecomposition of the food web and the rate of supplyof nitrogen. The impact of macrozooplankton onrates of nitrogen cycling in a microbial communityis complex: macrozooplankton release NH4 +,urea, and amino acids by direct excretion and by’sloppy feeding‘, but they also control both therates of nitrogen regeneration and uptake within thecommunity by grazing the microzooplankton, theprimary regenerators of NH4 +, and thephytoplankton, the primary consumers of nitrogen. Thus, grazing and nitrogen recycling are intricatelyconnected: the presence of large zoooplanktonsimultaneously provides top-down control of biomassand bottom-up nutrient supply. These relationshipsvary depending on the scale of interest, and haveimportant consequences for how we measure and modeltotal nitrogen cycling in a natural food web.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antia, N. J., P. J. Harrison & L. Oliveira, 1991. The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia 30: 1–89.

    Google Scholar 

  • Azam, F. T., T. Fenchel, J. G. Field, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263.

    Google Scholar 

  • Banse, K., 1994. Grazing and zooplankton production as key controls of phytoplankton production in the open ocean. Oceanography 7: 13–20.

    Google Scholar 

  • Bidigare, R. R., 1983. Nitrogen excretion by marine zooplankton. In Carpenter, E. J. & D. G. Capone (eds), Nitrogen in the Marine Environment. Academic Press: 385–409.

  • Boicourt, W. C., S.-Y. Chao, H. W. Ducklow, P. M. Glibert, T. C. Malone, M. R. Roman, L. P. Sanford, J. A. Fuhrman, C. Garside & R. W. Garvine, 1987. Physics and microbial ecology of a buoyant estuarine plume on the continental shelf. EOS 68: 666–668.

    Google Scholar 

  • Bronk, D. A. & P. M. Glibert, 1991. A 15N method for the measurement of dissolved organic nitrogen release by phytoplankton. Mar. Ecol. Prog. Ser. 77: 171–182.

    CAS  Google Scholar 

  • Bronk, D. A. & P. M. Glibert, 1994. The fate of the missing 15N differs among marine systems. Limnol. Oceanogr. 39: 189–195.

    CAS  Google Scholar 

  • Carlsson, P., E. Granéli, P. Tester & L. Boni, 1995. Influences of riverine humic substances on bacteria, protozoa, phytoplankton, and copepods in a coastal plankton community. Mar. Ecol. Prog. Ser. 127: 213–221.

    CAS  Google Scholar 

  • Caron, D. A. & J. C. Goldman, 1990. Protozoan nutrient regeneration. In Capriulo, G. M. (ed.), Ecology of Marine Protozoa. Oxford, 283–306.

  • Chisholm, S. W., 1992. Phytoplankton size. In Falkowski, P. G. & A. D. Woodhead (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum, 213–238.

  • Christaki, U. &F. Van Wambeke, 1995. Simulated phytoplankton bloom input in top–down manipulated mesocosms: comparative effect of zooflagellates, ciliates and copepods. Aquat. Microb. Ecol. 9: 137–147.

    Google Scholar 

  • Dagg, M. J., 1974. Loss of prey contents during feeding by an aquatic predator. Ecology 55: 903–906.

    Article  Google Scholar 

  • Dam, H. G., X. Zhang, M. Butler & M. R. Roman, 1995. Mesozooplankton grazing and metabolism at the equator in the central Pacific: Implications for carbon and nitrogen fluxes. Deep-Sea Res. 42: 735–756.

    Article  CAS  Google Scholar 

  • DeBaar, H. J. W., 1994. VonLiebig’s law of the minimum and plankton ecology (1899–1991). Prog. Oceanogr. 33: 347–386.

    Article  Google Scholar 

  • Ducklow, H. W., M. J. R. Fasham & A. F. Vezina, 1989. Derivation and analysis of flow networks for oceanic plankton systems. In F. Wulff, J. G. Field & K. H. Mann (eds), Network Analysis in Marine Ecology. Springer 159–205.

  • Dugdale, R. C. & J. J. Goering, 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol. Oceanogr. 12: 196–206.

    CAS  Google Scholar 

  • Eppley, R. W., S. G. Horrigan, J. A. Fuhrman, E. R. Brooks, C. C. Price & K. Sellner, 1981. Origins of dissolved organic matter in Southern California coastal water: experiments on the role of zooplankton. Mar. Ecol. Rog. Ser. 6: 149–159.

    Google Scholar 

  • Eppley, R. W. & B. J. Peterson, 1979. Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282: 677–680.

    Article  Google Scholar 

  • Fenchel, T. & P. Harrison, 1976. The significance of bacterial grazing and mineral cycling for the decomposition of particulate detritus. In Anderson, J. M. & A. MacFayden (eds), The Role of Terrestrial and Aquatic Organisms in Decomposition Processes. Blackwell, Oxford, 285–299.

    Google Scholar 

  • Fisher, T. R., P. R. Carlson & R. T. Barber, 1982. Carbon and nitrogen primary productivity in three North Carolina estuaries. Estuar. coast. Shelf Sci. 15: 621–644.

    Article  CAS  Google Scholar 

  • Fuhrman, J. A., 1987. Close coupling between release and uptake of dissolved free amino acids in seawater studies by an isotope dilution approach. Mar. Ecol. Prog. Ser. 37: 45–52.

    CAS  Google Scholar 

  • Fuhrman, J. A., 1990. Dissolved free amino acid cycling in an estuarine outflow plume. Mar. Ecol. Prog. Ser. 66: 197–203.

    CAS  Google Scholar 

  • Fuhrman, J. A., 1992. Bacterioplankton roles in cycling of organic matter: the microbial loop. In Falkowski, P. G. & A. D. Woodhead (eds), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum, 361–383.

  • Gebbing, J., 1910. Über den Gehalt des Meeres an Stickstoffnährsalzen. Untersuchungergebnisse der von der Deutschen Südpolar-Expedition (1901–1903) gesammelten Meerwasserproben. Internationale Revue der gestamten Hydrobiologie 3: 50–66.

    Google Scholar 

  • Glibert, P. M., 1988. Primary productivity and pelagic nitrogen cycling. In T. H. Blackburn & J. Sørensen (eds), Nitrogen Cycling in Coastal Marine Environments. SCOPE 33, J. Wiley & Sons 3–31.

  • Glibert, P. M., 1993. The interdependence of uptake and release of NH4 + and organic nitrogen. Mar. Microb. Food Webs 7: 53–67.

    Google Scholar 

  • Glibert, P. M. & D. G. Capone, 1993. Mineralization and assimilation in aquatic, sediment, and wetland systems. In Knowles, R. & T. H. Blackburn (eds), Nitrogen Isotope Techniques, 243–272.

  • Glibert, P. M., C. Garside, J. A. Fuhrman & M. R. Roman, 1991. Time-dependent coupling of inorganic and organic nitrogen uptake and regeneration in the plume of the Chesapeake Bay estuary and its regulation by large heterotrophs. Limnol. Oceanogr. 36: 895–909.

    Article  Google Scholar 

  • Glibert, P. M., J. C. Goldman & E. J. Carpenter, 1982. Seasonal variations in the utilization of ammonium and nitrate by phytoplankton in Vineyard Sound, Massachusetts, USA. Mar. Biol. 70: 237–249.

    Article  Google Scholar 

  • Glibert, P. M., C. A. Miller, C. Garside, M. R. Roman & G. B. McManus, 1992. NH4 + regeneration and grazing: interdependent processes in size–fractionated 15NH4 + experiments. Mar. Ecol. Prog. Ser. 82: 65–74.

    CAS  Google Scholar 

  • Goldman, J. C., 1993. Potential role of large oceanic diatoms in new primary production. Deep Sea Res. 40: 159–168.

    Article  Google Scholar 

  • Goldman, J. C., D. A. Caron & M. R. Dennett, 1987. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limnol. Oceanogr. 32: 1239–1252.

    CAS  Google Scholar 

  • Goldman, J. C. & M. R. Dennett, 1991. Ammonium regeneration and carbon utilization by marine bacteria grown on mixed substrates. Mar. Biol. 109: 369–378.

    Article  CAS  Google Scholar 

  • Goldman, J. C. & P. M. Glibert, 1983. Kinetics of inorganic nitrogen uptake by phytoplankton. In Carpenter, E. J. & D. G. Capone (eds), Nitrogen in the Marine Environment. Academic: 233–274.

  • Hagström, Å., F. Azam, A. Andersson, J. Wikner, & F. Rassoulzadegan, 1988. Microbial loop in an oligotrophic pelagic ecosystem: Possible roles of cyanobacteria and nanoflagellates in the organic fluxes. Mar. Ecol. Prog. Ser. 49: 171–178.

    Google Scholar 

  • Hansen, B., P. K. Bjørnsen & P. J. Hansen, 1994. The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39: 395–403.

    Google Scholar 

  • Harris, E., 1959. The nitrogen cycle of Long Island Sound. Bull. Bingham, oceanogr. Coll. 17: 31–64.

    Google Scholar 

  • Harvey, H. W., 1945. Recent Advances in the Chemistry and Biology of Seawater. Cambridge University Press.

  • Hunter, M. D. & P. W. Price, 1992. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73: 724–732.

    Google Scholar 

  • Johannes, R. E., 1965. Influence of marine protozoa on nutrient regeneration. Limnol. Oceanogr. 10: 433–442.

    Google Scholar 

  • Johannes, R.W., 1968. Nutrient regeneration in lakes and oceans. In Droop, M. R. & E. J. F. Wood (eds), Advances in Microbiology of the Sea. Academic Press 203–213.

  • Jørgensen, N. O. G., N. Kroer & R. B. Coffin, 1993. Dissolved free amino acids, combined amino acids, and DNA as sources of carbon and nitrogen to marine bacteria. Mar. Ecol. Prog. Ser. 98: 135–148.

    Google Scholar 

  • Kokkinakis, S. A. & P. A. Wheeler, 1988. Uptake of ammonium and urea in the northeast Pacific: comparison between netplankton and nanoplankton. Mar. Ecol. Prog. Ser. 43: 113–124.

    CAS  Google Scholar 

  • Lampert, W., 1978. Release of dissolved organic carbon by grazing zooplankton. Limnol. Oceanogr. 23: 831–835.

    CAS  Google Scholar 

  • Legendre, L. & F. Rassoulzadegan, 1995. Plankton and nutrient dynamics in marine waters. Ophelia 41: 153–172.

    Google Scholar 

  • Liebig, J. Von (1855) Principles of agricultural chemistry with special reference to the late researches made in England, 17–34. Reprinted in: Cycles of Essential Elements (Benchmark papers in Ecology, Vol. I, L. R. Pomeroy, 1974, Dowden, Hutchinson & Ross, Inc., Straussburg, Pennsylvania, 11–28.

    Google Scholar 

  • Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.

    Article  Google Scholar 

  • MacIsaac, J. J. & R. C. Dugdale, 1972. Interactions of light and inorganic nitrogen in controlling nitrogen uptake in the sea. Deep-Sea Res. 19: 209–232.

    CAS  Google Scholar 

  • Malone, T. C., D. J. Conley, T. R. Fisher, P. M. Glibert, L.W. Harding & K.G. Sellner, 1996. Scales of nutrient-limited phytoplankton productivity in Chesapeake Bay. Estuaries 19: 371–385.

    Article  CAS  Google Scholar 

  • Malone, T. C. & H. W. Ducklow, 1990. Microbial biomass in the coastal plume of Chesapeake Bay: Phytoplanktonbacterioplankton relationships. Limnol. Oceanogr. 35: 296–312.

    CAS  Google Scholar 

  • McCarthy, J. J., 1982. The kinetics of nutrient utilization. In Platt, T. (ed.), Physiological Bases of Phytoplankton Ecology. Can. J. Fish. aquat. Sci 210: 211–233.

  • McCarthy, J. J. & J. C. Goldman, 1979. Nitrogenous nutrition of marine phytoplankton in nutrient depleted waters. Science 203: 670–672.

    CAS  PubMed  Google Scholar 

  • Miller, C. A., 1992. Effects of food quality and quantity on nitrogen excretion by the copepod, Acartia tonsa, PhD dissertation, University of Maryland, College Park.

    Google Scholar 

  • Miller, C. A., D. L. Penry & P. M. Glibert, 1995. The impact of trophic interactions on rates of nitrogen regeneration and grazing in Chesapeake Bay. Limnol. Oceanogr. 40: 1005–1011.

    CAS  Google Scholar 

  • Miller, C. A., P. M. Glibert, G. M. Berg & M. R. Mulholland, 1997. The effects of grazer and substrate amendments on nutrient and plankton dynamics in estuarine enclosures. Aquat. Microb. Ecol., 12: 251–261.

    Google Scholar 

  • Mousseau, L., L. Legendre & L. Fortier, 1996. Dynamics of size-fractionated phytoplankton and trophic pathways on the Scotian Shelf and at the shelf break, Northwest Atlantic. Aquat. Microb. Ecol. 10: 149–163.

    Google Scholar 

  • Mulholland, M. R., P. M. Glibert, G. M. Berg, L. Van Heukelem, S. Pantoja & C. Lee, in press. Extracellular amino acid oxidation by microplankton: A cross-ecosystem comparison. Aquat. microb. Ecol.

  • Nathansohn, A., 1908. Über die allgemeinen Produktionsbedingungen im Meere, Beiträge zur Biologie des Planktons, von H. H. Gran und Nathansohn. Internationale Revue der gestamten Hydrobiologie 1: 38–72.

    Google Scholar 

  • Oviatt, C. A., 1994. Biological considerations in marine enclosure experiments: Challenges and revelations. Oceanography 7: 45–51.

    Google Scholar 

  • Palenik, B. & F. M. M. Morel, 1990a. Amino acid utilization by marine phytoplankton: a novel mechanism. Limnol. Oceanogr. 35: 260–269.

    CAS  Google Scholar 

  • Palenik, B. & F. M. M. Morel, 1990b. Comparison of cell-surface L-amino acid oxidases from several marine phytoplankton. Mar. Ecol. Prog. Ser. 59: 195–201.

    CAS  Google Scholar 

  • Pantoja, S. & C. Lee, 1994. Cell-surface oxidase of amino acids in sea water. Limnol. Oceanogr. 39: 1718–1725.

    Article  CAS  Google Scholar 

  • Paerl, H. W., 1988. Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnol. Oceanogr. 33: 823–847.

    CAS  Google Scholar 

  • Probyn, T. A., 1985. Nitrogen uptake by size-fractionated phytoplankton population in the southern Benguela upwelling system. Mar. Ecol. Prog. Ser. 22: 249–258.

    CAS  Google Scholar 

  • Proctor, L. M. & J. A. Fuhrman, 1991. Roles of viral infection in organic particle flux. Mar. Ecol. Prog. Ser. 69: 133–142.

    Google Scholar 

  • Riemann, B., N. O. G. Jørgensen, W. Lampert & J. A. Fuhrman, 1986. Zooplankton induced changes in dissolved free amino acids and in production rates of freshwater bacteria. Microb. Ecol. 12: 247–258.

    Article  CAS  Google Scholar 

  • Roman, M. R., H. W. Ducklow, J. A. Fuhrman, C. Garside, P. M. Glibert, T. C. Malone & G. B. McManus, 1988. Production, consumption, and nutrient cycling in a laboratory mesocosm. Mar. Ecol. Prog. Ser. 42: 39–52.

    Google Scholar 

  • Roman, M. R., M. J. Furnas & M. M. Mullin, 1990. Zooplankton abundance and grazing at Davies Reef, Great Barrier Reef, Australia. Mar. Biol. 105: 73–82.

    Article  Google Scholar 

  • Schnepf, E. M. & M. Elbrächter, 1992. Nutritional strategies in dinoflagellates. Eur. J. Protistol. 28: 3–24.

    Google Scholar 

  • Suttle, C. A., A. M. Chan & M. T. Cottrell, 1991. Use of ultrafiltration to isolate viruses from seawater which are pathogens of marine phytoplankton. Appl. envir. Microbiol. 57: 721–726.

    Google Scholar 

  • Tupas, L. & I. Koike, 1990. Amino acid and ammonium utilization by heterotophic marine bacteria grown in enriched seawater. Limnol. Oceanogr. 35: 1145–1155.

    CAS  Google Scholar 

  • Vaqué, D., C. Marrasé, V. Iñiguez & M. Alcarez, 1989. Zooplankton influence on phytoplankton-bacterioplankton coupling. J. Plankton Res. 11: 625–632.

    Google Scholar 

  • Vezina, A. F. & T. Platt, 1987. Small-scale variability of new production and particulate fluxes in the ocean. Can. J. Fish. aquat. Sci. 44: 198–205.

    Google Scholar 

  • Wikner, J. & Å. Hagström, 1988. Evidence for a tightly coupled nanoplanktonic predator-prey link regulating the bacteriovores in the marine environment. Mar. Ecol. Prog. Ser. 50: 137–145.

    Google Scholar 

  • Williams, P. J. LeB., 1990. The importance of losses during microbial growth: Commentary on the physiology, measurement and ecology of the release of dissolved organic material. Mar. Microb. Food Webs 4: 175–193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glibert, P.M. Interactions of top-down and bottom-up control in planktonic nitrogen cycling. Hydrobiologia 363, 1–12 (1997). https://doi.org/10.1023/A:1003125805822

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003125805822

Navigation