Skip to main content
Log in

Short Term, Direct Indices of Solar Variability

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Indices of solar activity relevant for understanding and modelling solar irradiance variability are identified, and their temporal characteristics compared. Reproducing observed solar irradiance variability requires a minimum of two different types of indices — an index for irradiance depletion by sunspots and an index for global irradiance enhancement by faculae and network. When combined with appropriate wavelength-dependent parameterizations of sunspot and facular contrasts and center-to-limb functions, these indices permit the construction of empirical models of daily, monthly and annual solar total and spectral irradiances. The models are compared with observations at selected wavelengths and for the total irradiance. While the models replicate much of the rotational and 11-year cycle variance in contemporary irradiance databases, differences exist because of either the presence of variability mechanisms additional to solar magnetism, or of unresolved instrumental effects in the databases. The reconstruction of solar irradiance in the past requires speculation about the extent of intercycle fluctuations in the global facular index, or in other, as yet unspecified, variability mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen, C. W.: 1981, Astrophysical Quantities, 3rd Edition, Athlone, London.

    Google Scholar 

  • Beer, J.: 2000, ‘Long-Term Indirect Indices of Solar Variability’ Space Sci. Rev., this volume.

  • de Toma, G., White, O. R., Knapp, B.G., Rottman, G. J., and Woods, T. N.: 1997, ‘Mg II core-to-wing index: Comparison of SBUV 2 and SOLSTICE time series’, J. Geophys. Res. 102, 2597.

    Google Scholar 

  • Fligge, M., and Solanki, S. K.: 1997, ‘Inter-cycle variations of solar irradiance: Sunspot areas as a pointer’, Solar Phys. 173, 427.

    Google Scholar 

  • Fontenla, J., White, O. R., Fox, P. A., Avrett, E. H., and Kurucz, R. L.: 1999, ‘Calculation of Solar Irradiances. I. Synthesis of the Solar Spectrum’, Astrophys. J. 518, 480.

    Google Scholar 

  • Foukal, P.: 1998, ‘Extension of the F10.7 Index to 1905 using Mt. Wilson Ca K Spectroheliograms’, Geophys. Res. Lett. 25, 2902.

    Google Scholar 

  • Foukal, P. and Lean, J.: 1988, ‘Magnetic Modulation of Solar Luminosity by Photospheric Activity’, Astrophys. J. 328, 347.

    Google Scholar 

  • Fröhlich, C.: 2000, Space Sci. Rev., this volume.

  • Fröhlich, C. and Lean, J.: 1998, ‘The Sun's Total Irradiance: Cycles, Trends and Climate Change Uncertainties since 1976’, Geophys. Res. Lett. 25, 4377.

    Google Scholar 

  • Harvey, K. L., and White, O. R.: 1998, ‘Spectral Irradiances and Magnetic Structures’, Astronomical Society of the Pacific Conference Series 140, 247.

    Google Scholar 

  • Hoyt, D. V., and Schatten, K. H.: 1993, ‘A Discussion of Plausible solar irradiance variations’, J. Geophys. Res. 98, 18,895.

    Google Scholar 

  • Hoyt, D. V., and Schatten, K. H.: 1997, ‘The Role of the Sun in Climate Change’, Oxford University Press, Oxford.

    Google Scholar 

  • Hoyt, D. V., Schatten, K. H., and Nesme-Ribes, E.: 1994, ‘The One Hundredth Year of Rudolf Wolf's Death: Do we have the Correct Reconstruction of Solar Activity?’, Geophys. Res. Lett. 21, 2067.

    Google Scholar 

  • Kuhn, J. R., and Libbrecht, K.: 1991, ‘Nonfacular Solar Luminosity Variations’, Astrophys. J. 381, L35.

    Google Scholar 

  • Lean, J., and Rind, D.: 1998, ‘Climate forcing by changing solar radiation’, J. Climate 11, 3069.

    Google Scholar 

  • Lean, J. L., Rottman, G. J., Kyle, H. L.,Woods, T. N., Hickey, J. R., and Puga, L. C.: 1997, ‘Detection and parameterization of variations in solar mid and near ultraviolet radiation (200 to 400 nm)’, J. Geophys. Res. 102, 29939.

    Google Scholar 

  • Lean, J. L., Cook, J., Marquette, W., and Johannesson, A.: 1998, ‘Magnetic modulation of the solar irradiance cycle’, Astrophys. J. 492, 390.

    Google Scholar 

  • Rottman, G.: 2000, Space Sci. Rev., 1991-1999’, this volume.

  • Sofia, S., and Fox, P.: 1994, ‘Solar Variability and Climate’, Climate Change 30, 1.

    Google Scholar 

  • Solanki, S. K., and Unruh, Y. C.: 1998, ‘A model of the wavelength dependence of solar irradiance variations’, Astron. Astrophys. 329, 747.

    Google Scholar 

  • Unruh, Y. C., Solanki, S. K., and Fligge, M.: 2000, ‘Modelling Solar Spectral Irradiance Variations’, Space Sci. Rev., this volume.

  • White, O. R., Skumanich, A., Lean, J., Livingston, W. C., and Keil, S. L.: 1992, ‘The Sun in a Non-cycling State’, Publications of the Astronomical Society of the Pacific 104, 1139.

    Google Scholar 

  • White, O. R., Livingston, W. C., and Keil, S. L.: 1998,’ Variability of the Solar CaII K Line over the 22 Year Hale cycle’, Astronomical Society of the Pacific Conference Series 140, 293.

    Google Scholar 

  • Willson, R. C.: 1997, ‘Total Solar Irradiance Trend During Solar Cycles 21 and 22’, Science 277, 1963.

    Google Scholar 

  • Worden, J. R., White, O. R., and Woods, T. N.: 1998, ‘Evolution of chromospheric structures derived from CaII K spectroheliograms: implications for solar ultraviolet irradiance variability’, Astrophys. J. 496, 998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lean, J. Short Term, Direct Indices of Solar Variability. Space Science Reviews 94, 39–51 (2000). https://doi.org/10.1023/A:1026726029831

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026726029831

Keywords

Navigation