Skip to main content
Log in

Properties of Stationary Nonequilibrium States in the Thermostatted Periodic Lorentz Gas I: The One Particle System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study numerically and analytically the properties of the stationary state of a particle moving under the influence of an electric field E in a two dimensional periodic Lorentz gas with the energy kept constant by a Gaussian thermostat. Numerically the current appears to be a continuous function of E whose derivative varies very irregularly, possibly in a discontinuous manner. We argue for the non differentiability of the current as a function of E utilizing a symbolic description of the dynamics based on the discontinuities of the collision map. The decay of correlations and the behavior of the diffusion constant are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • [ACG] R. Artuso, G. Casati, and I. Guarneri, Geometric scaling of correlation decay in chaotic billiards, Phys. Rev. E 51:R3807–R3810 (1995).

    Google Scholar 

  • [BDGL] F. Bonetto, D. Daems, J. L. Lebowitz, and V. Ricci, Properties of stationary non-equilibrium states in the thermostatted periodic Lorentz gas II: The many point particles system, in preparation.

  • [BDLR] F. Bonetto, D. Daems, P. L. Garrido, and J. L. Lebowitz, Properties of stationary nonequilibrium states in the thermostatted periodic Lorentz gas III: The many colliding particles system, in preparation.

  • [BGG] F. Bonetto, G. Gallavotti, and P. L. Garrido, Chaotic hypothesis: An experimental test, Physica D 105:226–252 (1997).

    Google Scholar 

  • [BKL] F. Bonetto, A. Kupiainen, and J. L. Lebowitz, Perturbation theory for coupled Arnold cat maps: Absolute continuity of marginal distribution, in preparation.

  • P. G. Bergaman and J. L. Lebowitz, Phys. Rev. 99:2 (1955).

    Google Scholar 

  • [C] N. Chernov, Sinai billiards under small external forces, preprint, available at http://www.math.uab.edu/chernov/pubs.html.

  • [CELS] N. Chernov, G. Eyink, J. E. Lebowitz, and Ya. G. Sinai, Steady state electric conductivity in the periodic Lorentz gas, Commun. in Math. Phys. 154:569–601 (1993).

    Google Scholar 

  • [EM] D. J. Evans and G. P. Morris, Statistical Mechanics of Nonequilibrium Fluids (Academic Press, San Diego, 1990).

    Google Scholar 

  • [EPR1] J. P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Entropy production in nonlinear, thermally driven Hamiltonian systems, J. Statist. Phys. 95:305–331 (1999).

    Google Scholar 

  • [EPR2] J. P. Eckmann, C.-A. Pillet, and L. Rey-Bellet, Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures, Comm. Math. Phys. 201:657–697 (1999).

    Google Scholar 

  • [ER] J. P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57:617–656 (1985).

    Google Scholar 

  • [ES] D. Searles and D. J. Evans, The fluctuation theorem and Green–Kubo relations, to appear in JCP.

  • [G] G. Gallavotti, Extension of Onsager's reciprocity relations to large fields and the chaotic hypothesis, Phys. Rev. Lett. 77:4334–4337 (1996).

    Google Scholar 

  • [GC] G. Gallavotti and E. G. D. Cohen, Dynamical ensemble in stationary states, J. Stat. Phys. 80:931 (1995).

    Google Scholar 

  • [GG] G. Gallavotti and P. L. Garrido, Billiard correlation-functions, J. Stat. Phys. 76:549–585 (1994).

    Google Scholar 

  • [H] W. G. Hoover, Computational Statistical Mechanics (Elsevier, 1991).

  • [JLl] M. Jiang and R. de la Llave, Smooth dependence of thermodynamic limits of SRB-measures mp arc/99-122.

  • [KD] R. Klages and J. R. Dorfman, Simple maps with fractal diffusion coefficients, Phys. Rev. Lett. 74:387–390 (1995).

    Google Scholar 

  • [LNRM] J. Lloyd, M. Niemeyer, L. Rondoni, and G. P. Morris, The non-equilibrium Lorentz gas, Chaos 5:536–551 (1995).

    Google Scholar 

  • [LS] J. L. Lebowitz and H. Spohn, A Gallavotti–Cohen type symmetry in the large deviation functional for stochastic dynamics, J. Stat. Phys. 95:333 (1999).

    Google Scholar 

  • [MH] B. Moran and W. G. Hoover, Diffusion in the periodic Lorentz billiard, J. Stat. Phys. 48:709 (1987).

    Google Scholar 

  • [NR] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Wetterling, Numerical Recipes in C (Cambridge University Press, 1993).

  • [R] D. Ruelle, Differentiation of SRB states, Commun. Math. Phys. 187:227–241 (1997); Nonequilibrium statistical mechanics near equilibrium: computing higher-order terms, Non-linearity 11:5–18 (1998).

    Google Scholar 

  • [W] M. Wojtkowski, W-flows on Weyl manifolds and Gaussian thermostat, preprint, available at http://www.ma.utexas.edu/mp/arc #00-51.

  • [Y] L.-S. Young, Statistical properties of systems with some hyperbolicity including certain billiards, Annals of Math. 147:585–650 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonetto, F., Daems, D. & Lebowitz, J.L. Properties of Stationary Nonequilibrium States in the Thermostatted Periodic Lorentz Gas I: The One Particle System. Journal of Statistical Physics 101, 35–60 (2000). https://doi.org/10.1023/A:1026414222092

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026414222092

Navigation