Skip to main content
Log in

Role of Bifunctionality of ZrO2-Based Oxide Systems in NO Reduction with Lower Hydrocarbons

  • Published:
Kinetics and Catalysis Aims and scope Submit manuscript

Abstract

The catalytic properties of transition metal oxides (Cr, Ce, and Co) supported on ZrO2 synthesized by various methods, as well as the effect of rhodium on the performance of the Мe х O y /ZrO2 oxide systems in NO reduction with hydrocarbons (methane, propane–butane mixture, and propene) were studied. The acidity of the surface of the catalysts was studied by IR spectroscopy and ammonia temperature-programmed desorption. The adsorption of NO, propene, and their mixture on the Rh–Сr2О3/ZrO2 and Rh–СеO2/ZrO2 catalysts at temperatures of 293–623 K was studied by IR spectroscopy. The adsorption and co-adsorption of the reactants was found to differ significantly depending on the nature of the surface. The activity of the catalysts studied in NO selective catalytic reduction with hydrocarbons is due to the presence of the acidic functional groups on their surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Iwamoto, M., Stud. Surf. Sci. Catal., 2002, vol. 130, p. 23.

    Google Scholar 

  2. Fokema, M.D. and Ying, J.Y., Cat. Rev. - Sci. Eng., 2001, vol. 42, nos.1-2, p. 1.

    Google Scholar 

  3. Tana´e, K., Catalysts and Catalytic Processes, Moscow: Mir, 1993.

    Google Scholar 

  4. Fornasiero, P., Rao, G.R., Kaspar, J., L'Erario, F., and Graziani, M., J. Catal., 1998, vol. 175, no.2, p. 269

    Google Scholar 

  5. Pietrogiacomi, D., Sannino, D., Tuti, S., Ciam´elli, P., Indovina, V., and Occhiuzzi, M., Appl. Catal., B, 1998, vol. 21, no.2, p. 141.

    Google Scholar 

  6. Zu´ Yu., L., Ba´ich, N.N., and Orlik, S.N., Book of A´stracts, EuropaCat-, IV., Rimini, 1999, p. 314.

  7. Chuang, S.S.C. and Tan, C.D., J. Catal., 1998, vol. 173, no.1, p. 95.

    Google Scholar 

  8. Kharlanov, A.N., Lunina, E.V., and Lunin, V.V., Zh. Fiz. Khim., 1997, vol. 71, no.9, p. 1672.

    Google Scholar 

  9. Amiridis, M.D., Zhang, T., and Farrauto, R.J., Appl. Catal., B, 1996, vol. 10, p. 203.

    Google Scholar 

  10. Orlik, S.N., Teor. Eksp. Khim., 2001, vol. 37, no.3, p. 133.

    Google Scholar 

  11. Song, X. and Sayari, A., Catal. Rev. - Sci. Eng., 1996, vol. 38, no.3, p. 329.

    Google Scholar 

  12. Ivanov, A.V. and Kustov, L.M., Ross. Khim. Zh., 2000, vol. 44, no.2, p. 21.

    Google Scholar 

  13. Delahay, G., Ensuque, E., Coq, B., and Figueras, F., J. Catal., 1998, vol. 175, no.1, p. 7.

    Google Scholar 

  14. Pietrogiacomi, D., Tuti, S., Campa, M.C., and Indovina, V., Book of A´stracts, 5th Eur. Congr. on Catalysis, Limerik, 2001, p. 48.

  15. Struzhko, V.L., Orlik, S.N., Martsenyuk-Kukharuk, M.G., Tel'´iz, G.M., Ostapyuk, V.A., and Girushtin, Yu.G., Teor. Eksp. Khim., 1996, vol. 32, no.5, p. 306.

    Google Scholar 

  16. Practical Surface Analysis ´y Auger and X-ray Photo-electron Spectroscopy, Briggs, D. and Seah, M.P., Eds., New York: Wiley, 1983, p. 600.

    Google Scholar 

  17. Parvulescu, V.I., Grange, P., and Delmon, B., Catal. Today, 1998, vol. 46, p. 233.

    Google Scholar 

  18. Mironyuk, T.V., Struzhko, V.L., and Orlik, S.N., Teor. Eksp. Khim., 2000, vol. 36, no.5, p. 307.

    Google Scholar 

  19. Hamada, H., Kintaichi, Y., and Ta´ata, M., Chem. Lett., 1991, no. 1, p. 217.

    Google Scholar 

  20. Zhao, Y., Li, W., Zhang, M., and Tao, K., Catal. Commun., 2002, vol. 3, no.6, p. 239.

    Google Scholar 

  21. Orlik, S.N. and Struzhko, V.L., Teor. Eksp. Khim., 1999, vol. 35, no.6, p. 373.

    Google Scholar 

  22. Nefedov, V.I. Rentgenoelektronnaya spektroskopiya khimicheskikh soedinenii (X-ray Electron Spectroscopy of Chemical Compounds), Moscow: Khimiya, 1984.

    Google Scholar 

  23. Hu, Z., Allen, F.M., Wan, C.Z., Heck, R.M., Steger, J.J., Lakis, R.E., and Lyman, C.E., J. Catal., 1998, vol. 174, no.1, p. 13.

    Google Scholar 

  24. Harrison, B., Wyatt, M., and Gough, K.G., Catalysis, 1982, vol. 5, p. 127.

    Google Scholar 

  25. Shelef, M., Chem. Rev., 1995, vol. 95, no.1, p. 209.

    Google Scholar 

  26. Orlik, S.N., Stasevich, V.P., Struzhko, V.L., and Martsenyuk-Kukharuk, M.G., Teor. Eksp. Khim., 1996, vol. 32, no.4, p. 238.

    Google Scholar 

  27. Little, L.H., Infrared Spectra of Adsor´ed Species, New York: Academic, 1966.

    Google Scholar 

  28. Long, R.Q. and Yang, R.T., J. Phys. Chem., 1999, vol. 103, no.12, p. 2232.

    Google Scholar 

  29. Almusaiteer, K.A. and Chuang, S.C., J. Phys. Chem., 2000, vol. 104, no.10, p. 2265.

    Google Scholar 

  30. Sverdlov, L.M., Kovner, M.A., and Krainov, E.P., Kole´atel'nye spektry molekul (Vi´rational Spectra of Molecules), Moscow: Nauka, 1970.

  31. Xin, M., Hwang, I.C., and Woo, S.I., J. Phys. Chem., 1997, vol. 101, no.44, p. 9005.

    Google Scholar 

  32. Kazitsyna, L.A. and Kupletskaya, N.B., Primenenie UF, IK, YaMR i mass-spektroskopii v organicheskoi khimii (Applications of UV, IR, NMR, and Mass Spectrometry), Mosocow: Mosk. Gos. Univ., 1979, p. 240.

    Google Scholar 

  33. Maisuls, S.E., Multiphase Catalysts for Selective Reduction of NO x with Hydrocar´ons, 2000.

  34. Orlik, S.N., Struzhko, V.L., Mironyuk, T.V., and Tel'´iz, G.M., Teor. Eksp. Khim., 2001, vol. 37, no.5, p. 306.

    Google Scholar 

  35. Davydov, A.A., IK-spektroskopiya v khimii poverkhnosti okislov (IR Spectroscopy Applied to the Chemistry of Oxide Surfaces), Novosi´irsk: Nauka, 1984.

    Google Scholar 

  36. Matyshak, V.A. and Krylov, O.V., Catal. Today, 1995, vol. 25, p. 1.

    Google Scholar 

  37. Hopstaken, M.J.P. and Niemantsverdriet, J.W., J. Phys. Chem., 2000, vol. 104, no.14, p. 3058.

    Google Scholar 

  38. Daturi, M., Finnocchio, E., Binet, C., Lavalley, J.-C., Fally, F., Perrichon, V., Vidal, H., Hickey, N., and Kaspar, J., J. Phys. Chem., 2000, vol. 104, no.39, p. 9186.

    Google Scholar 

  39. Fornasiero, P., Ranga Rao, G., Kaspar, J., L'Erario, F.L., and Graziani, M., J. Catal., 1998, vol. 175, no.2, p. 269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orlik, S.N., Struzhko, V.L., Mironyuk, T.V. et al. Role of Bifunctionality of ZrO2-Based Oxide Systems in NO Reduction with Lower Hydrocarbons. Kinetics and Catalysis 44, 682–691 (2003). https://doi.org/10.1023/A:1026154425081

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026154425081

Keywords

Navigation