Skip to main content
Log in

Asymptotic Behavior of Solutions of the Cauchy Problem x′ = f(t, x, x′), x(0) = 0

Ukrainian Mathematical Journal Aims and scope

Abstract

We prove the existence of continuously differentiable solutions \(x:(0,{\rho ]} \to \mathbb{R}^n\) such that

$$\left\| {x\left( t \right) - {\xi }\left( t \right)} \right\| = O\left( {{\eta }\left( t \right)} \right),{ }\left\| {x'\left( t \right) - {\xi '}\left( t \right)} \right\| = O\left( {{\eta }\left( t \right)/t} \right),{ }t \to + 0$$

or

$$\left\| {x\left( t \right) - S_N \left( t \right)} \right\| = O\left( {t^{N + 1} } \right),{ }\left\| {x'\left( t \right) - S'_N \left( t \right)} \right\| = O\left( {t^N } \right),{ }t \to + 0,$$

where

$${\xi }:\left( {0,{\tau }} \right) \to \mathbb{R}^n ,{ \eta }:\left( {0,{\tau }} \right) \to \left( {0, + \infty } \right),{ }\left\| {{\xi }\left( t \right)} \right\| = o\left( 1 \right),$$
$${\eta }\left( t \right) = o\left( t \right),{ \eta }\left( t \right) = o\left( {\left\| {{\xi }\left( t \right)} \right\|} \right),{ }t \to + 0,{ }S_N \left( t \right) = \sum\limits_{k = 2}^N {c_k t^k ,}$$
$$c_k \in \mathbb{R}^n ,k \in \left\{ {2,...,N} \right\},{ }0 < {\rho } < {\tau },{ \rho is sufficiently small}{.}$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. N. Vityuk, “Generalized Cauchy problem for system of differential equations that is unsolvable with respect to derivatives,” Differents. Uravn., 7, No. 9, 1575–1580 (1971).

    Google Scholar 

  2. N. P. Erugin, I. Z. Shtokalo, and P. S. Bondarenko, Course of Ordinary Differential Equations [in Russian], Vyshcha Shkola, Kiev (1974).

    Google Scholar 

  3. V. P. Rudakov, “On existence and uniqueness of solution of systems of differential equations of first order that are partially solvable with respect to derivatives,” Izv. Vuzov. Matematika, No. 9, 79–84 (1971).

  4. G. Anichini and G. Conti, “Boundary value problems for implicit ODE's in a singular case,” Different. Equat. Dynam. Systems, 7, No. 4, 437–459 (1999).

    Google Scholar 

  5. R. Conti, “Sulla risoluzione dell'equazione F(t, x dx/dt)=0,” Ann. Mat. Pura ed Appl., No. 48, 97–102 (1959).

  6. M. Frigon and T. Kaczynski, “Boundary value problems for systems of implicit differential equations,” J. Math. Anal. Appl., 179, No. 2, 317–326 (1993).

    Google Scholar 

  7. Z. Kowalski, “The polygonal method of solving the differential equation y′=(t, y, y, y′),” Ann. Pol. Math., 13, No. 2, 173–204 (1963).

    Google Scholar 

  8. B. P. Demidovich, Lectures on Mathematical Theory of Stability [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  9. N. P. Erugin, The Book for Reading on General Course of Differential Equations [in Russian], Nauka i Tekhnika, Minsk (1972).

    Google Scholar 

  10. V. V. Nemytskii and V. V. Stepanov, Quality Theory of Differential Equations [in Russian], Gostekhteoretizdat, Moscow (1949).

    Google Scholar 

  11. A. E. Zernov, “On solvability and asymptotic properties of solutions of a singular Cauchy problem,” Differents. Uravn., 28, No. 5, 756–760 (1992).

    Google Scholar 

  12. A. E. Zernov, “Quality analysis of implicit singular Cauchy problem,” Ukr. Mat. Zh., 54, No. 3, 302–310 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zernov, A.E., Kuzina, Y.V. Asymptotic Behavior of Solutions of the Cauchy Problem x′ = f(t, x, x′), x(0) = 0. Ukrainian Mathematical Journal 54, 2060–2066 (2002). https://doi.org/10.1023/A:1024037718175

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024037718175

Keywords

Navigation