Skip to main content
Log in

Phosphorus Cycle in the Ocean

  • Published:
Lithology and Mineral Resources Aims and scope Submit manuscript

Abstract

The behavior of phosphorus is considered at major stages of the sedimentary cycle beginning with supply sources for its delivery into the ocean to precipitation and its sedimentation, localization and subsequent diagenetic redistribution in bottom sediments. River runoff represents the main phosphorus source in the ocean. It delivers annually about 1.5 Mt of dissolved phosphorus and more than 20 Mt of suspended phosphorus into the ocean. Up to 80% of the suspended phosphorus incorporated in the lithogenic material precipitates within submarine continental margins. Phosphorus dissolved in seawater repeatedly participates in biogeochemical processes owing to its assimilation by phytoplankton that annually consumes from 1.5 to 2.5 Gt of phosphorus. Dissolved phosphorus is incorporated in organic remains and precipitates from seawater by a biogenic mechanism, too. Only a part of phosphorus settled onto the bottom is buried in sediments. Due to reducing diagenetic processes, up to 30–40% of the primarily precipitated phosphorus diffuses from the upper layer of sediments into bottom water. Diffusion flux into the ocean significantly exceeds the supply of dissolved phosphorus from river runoff. The absolute mass phosphorus dispersed in sediments is several orders of magnitude greater than the mass concentrated in phosphorite deposits. However, the majority of phosphorite formation epochs coincide with the intensification of total phosphorus accumulation in marine sediments in conditions of humid climate, intense chemical weathering of rocks on continents, and considerable expansion of the oceanic shelf area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aller, R.C.,The Influence of Macrobenthos on Chemical Diagenesis of Marine Sediments, Ph.D. Dissertation, New Haven: Yale Univ., 1977.

  • Archer, D. and Maier-Reimer, E., Effect of Deep-Sea Sedimentary Calcite Preservation on Atmospheric CO2 Concentration, Nature (London), 1994, vol. 367, no.6420, pp. 260–263.

    Google Scholar 

  • Baturin, G.N., Authigenic Phosphorite Nodules in Recent Sediments of the Southeastern African Shelf, Dokl. Akad. Nauk SSSR, 1969, vol. 183, no.6, pp. 1359–1362.

    Google Scholar 

  • Baturin, G.N., Phosphorus in Mud Waters of the Southeastern Atlantic, Okeanologiya, 1972, vol. 12, no.6, pp. 1020–1027.

    Google Scholar 

  • Baturin, G.N., Fosfority na dne okeanov (Phosphorites on the Ocean Floor), Moscow: Nauka, 1978.

    Google Scholar 

  • Baturin, G.N., Phosphorites on the Sea Floor: Origin, Composition, and Distribution, Amsterdam: Elsevier, 1982.

    Google Scholar 

  • Baturin, G.N., Disseminated Phosphorus in Oceanic Sediments—A Review, Mar. Geol., 1988, vol. 84, no.1, pp. 95–104.

    Google Scholar 

  • Baturin, G.N., Problem of Intensification of the Supply of Sedimentary Material and Some Chemical Elements in the Ocean, Okeanologiya, 1997, vol. 37, no.2, pp. 270–284.

    Google Scholar 

  • Baturin, G.N., Phosphorus in the Ocean and the Earths Climate, Okeanologiya, 2001, vol. 41, no.1, pp. 138–146.

    Google Scholar 

  • Baturin, G.N. and Savenko, V.S., Phosphorus in the Oceanic Sedimentogenesis, Okeanologiya, 1997, vol. 37, no.1, pp. 115–122.

    Google Scholar 

  • Baturin, G.N. and Sevast'yanova, E.S., Phosphorus in Sediments of the Indian Ocean, Geokhimiya, 1986, no. 5, pp. 636–644.

    Google Scholar 

  • Baturin, G.N., Lucas, J., and Lucas-Prevot, L., Phosphorus Behaviour in Marine Sedimentation. Continuous P-Behaviour versus Discontinuous Phosphogenesis, C. R. Acad. Sci., 1995, Ser. IIa, vol. 321, pp. 263–278.

    Google Scholar 

  • Berner, R.A. and Rao, J.L., Phosphorus in Sediments of the Amazon River and Estuary: Implications for the Global Flux of Phosphorus to the Sea, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 2333–2339.

    Google Scholar 

  • Berner, R.A., Ruttenberg, K., Ingall, E.D., and Rao, J.L., The Nature of Phosphorus Burial in Modern Marine Sediments, Interaction of C,N,P, and S Biogeochemical Cysles and Global Change, Wollast, R. and Mackenzie, F.T., Eds., London: Springer, 1993, pp. 365–378.

    Google Scholar 

  • Bogdanov, Yu.A., Lisitsyn, A.P., and Romankevich, E.A., Organic Material in Suspension and Bottom Sediments of the World Ocean, Organicheskoe veshchestvo sovremennykh i iskopaemykh osadkov (Organic Material in Recent and Fossil Sediments), Moscow: Nauka, 1971, pp. 35–103.

    Google Scholar 

  • Bordovskii, O.K., Domanov, M.M., and Fedikov, N.F., Exchange between Biogenic Elements at the Water–Bottom Boundary in the Coastal Zone of Peru, Okeanologiya, 1980, vol. 20, no.4, pp. 645–650.

    Google Scholar 

  • Boyle, E.A., Paired Carbon Isotope and Cadmium Data from Benthic Foraminifera: Implications for Changes in Oceanic Phosphorus, Oceanic Circulation, and Atmospheric Carbon Dioxide, Geochim. Cosmochim. Acta, 1986, vol. 50, no.2, pp. 265–276.

    Google Scholar 

  • Bray, J.T., Bricker, O.P., and Troup, B.N., Phosphate in Interstitial Waters of Anoxic Sediments: Oxidation Effects during Sampling Procedure, Science, 1973, vol. 180, no.4093, pp. 1362–1364.

    Google Scholar 

  • Broecker, W.S., Ocean Chemistry during Glacial Time, Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 1689–1705.

    Google Scholar 

  • Bruevich, S.V. and Vinogradova, E.G., Chemical Composition of Underground Solutions of the Caspian Sea, Gidrokhim. Mat., 1947, vol 13, pp. 129–186.

    Google Scholar 

  • Bruevich, S.I. and Zaitseva, E.D., Biogenic Elements in Underground Solutions of the Pacific Ocean, Tr. Inst. Okeanol. Akad. Nauk. SSSR, 1964, vol. 47, pp. 56–90.

    Google Scholar 

  • Bruland, K.W., Chemical Oceanography, London: Academic, 1983, pp. 157–220.

    Google Scholar 

  • Burnett, W.C., Geochemistry and Origin of Phosphorite Deposits from off Peru and Chile, Bull. Geol. Soc. Am., 1977, vol. 88, no.6, pp. 813–823.

    Google Scholar 

  • Bushinskii, G.I., The Origin of Marine Phosphorites, Litol. Polezn. Iskop., 1966, no. 3, pp. 15–23.

    Google Scholar 

  • Colman, A.S. and Holland, H.D., The Global Diagenetic Flux of Phosphorus from Marine Sediments to the Oceans: Redox Sensitivity and the Control of Atmospheric Oxygen Levels, Marine Authigenesis: from Global to Microbial, Glenn C.R., Prevot-Lucas L., and Lucas J., Eds., SEPM Spec. Publ., 2000, no. 66, pp. 53–75.

  • Compton, J., Mallinson, D., Glenn, C., et al., Variations in the Global Phosphorus Cycle, Marine Authigenesis: from Global to Microbial, Glenn, C.R., Prevo-Lucas, and Lucas J., Eds., SEPM. Spec. Publ., 2000, pp. 35–51.

  • Cook, P.J. and McElhinny, M.W., A Reevaluation of the Spacial and Temporal Distribution of Sedimentary Phosphate Deposits in the Light of Plate Tectonics, Econ. Geol., 1979, vol. 79, no.2, pp. 315–330.

    Google Scholar 

  • Edel'shtein, K.K., Discharge of Phosphorus with Urban Waste Water in the Oceanic Coastal Zone, Okeanologiya, 1998, vol. 38, no.2, pp. 216–220.

    Google Scholar 

  • Emel'yanov, E.M. and Romankevich, E.A., Geokhimiya Atlanticheskogo okeana. Organicheskoe veshchestvo i fosfor (Geochemistry of the Atlantic Ocean: Organic Material and Phosphorus), Moscow: Nauka, 1979.

    Google Scholar 

  • Feely, R.A., Massoth, G.J., Baker, E.T., et al., The Effect of Hydrothermal Processes on Midwater Phosphorus Distribution in the North East Pacific, Earth Planet. Sci. Lett., 1990, vol. 96, nos.3–4, pp. 305–318.

    Google Scholar 

  • Filipek, L.H. and Owen, R.M., Diagenetic Controls on Phosphoru in Outer Continental Shelf Sediments from the Gulf of Mexico, Chem. Geol., 1981, vol. 33, pp. 181–204.

    Google Scholar 

  • Filippelli, G.M. and Delaney, M.L., The Oceanic Phosphorus Cycle and Continental Weathering during the Neogene, Paleoceanography, 1994, vol. 9, pp. 643–652.

    Google Scholar 

  • Föllmi, K.B., The Phosphorus Cycle, Phosphogenesis, and Marine Phosphate-rich Deposits, Earth Sci. Rev., 1996, no. 4, pp. 55–124.

    Google Scholar 

  • Föllmi, K.B. and von Breymann, M., Phosphates and Glauconites of Sites 798 and 799, Proc. Ocean Drill. Progr.: Sci. Results, 1992, Leg 127/128, pp. 63–74.

  • Föllmi, K.B., Weissert, H., and Lini, A., Nonlinearities in Phosphogenesis and Phosphorus-Carbon Coupling and Their Implications for Global Change, Interactions of C, N, P, and S Biogeochemical Cycles and Global Change, Wollast R., Mackenzie F.T., and Chou L., Eds., NATO ASI Ser., 1993, vol. 14, pp. 447–474.

  • Froelich, P.N., Bender, M.L., and Heath, G.R., Phosphorus Accumulation Rates in Metalliferous Sediments on the East Pacific Rise, Earth Planet. Sci. Lett., 1977, vol. 34, pp. 351–359.

    Google Scholar 

  • Froelich, P.N., Bender, M.L., Luedtke, N.A., et al., The Marine Phosphorus Cycle, Am. J. Sci., 1982, vol. 282, pp. 474–511.

    Google Scholar 

  • Gaioty Zapadnoi Patsifiki i ikh rudonosnost' (Guyots of the Western Pacific and Their Ore Potential), Moscow: Nauka, 1995.

  • Glenn, C.R. and Arthur, M.A., Sedimentary and Geochemical Indicators of Productivity and Oxygen Contents in Modern and Ancient Basins: The Holocene Black Sea as the “Type” Anoxic Basin, Chem. Geol., 1985, vol. 48, pp. 325–354.

    Google Scholar 

  • Gordeev, V.V., Rechnoi stok v okean i cherty ego geokhimii (River Runoff into the Ocean and Features of Its Geochemistry), Moscow: Nauka, 1983.

    Google Scholar 

  • Gordeev, V.V., Chemistry of Hydrothermal Solutions in Basins of the Back-Arc Spreading (Woodlark and Manus), Metallogeniya sovremennykh i drevnikh okeanov (Metallogeny of Recent and Ancient Oceans), Moscow: TsNIGRI, 1992, pp. 181–183.

    Google Scholar 

  • Gorshkov, V.G., Tenfold Intensification of Production of Dissolved Organic Matter in the Ocean over the Industrial Era, Dokl. Akad. Nauk SSSR, 1991, vol. 320, no.2, pp. 492–497.

    Google Scholar 

  • Gorshkov, V.G. and Makar'eva, A.M., Changes in the Global Cycle of Carbon Based on Measurements of the O2 /N2 Ratio in the Atmosphere and Partial Pressure of CO2 near the Ocean–Atmosphere Interface, Geokhimiya, 2002, no. 5, pp. 526–535.

    Google Scholar 

  • Gusarova, A.N. and Bordovskii, O.K., Assessment of Primary Production of the World Ocean Based on the Dynamics of Phosphate and Silica, Dokl. Akad. Nauk, 1993, vol. 330, no.5, pp. 634–637.

    Google Scholar 

  • Heggie, D.T., Skyring, G.W., O'Brian, G.W., et al., Organic Carbon Cycling and Modern Phosphorite Formation on the East Australian Continental Margin: An Overview, Phosphorite Research and Development, Notholt, G.J. and Jarvis I., London: Geol. Soc. Spec. Publ., 1990, no. 52, pp. 87–117.

    Google Scholar 

  • Hein, J.R., Yeh, H.W., Gunn, S.H., et al., The Major Cenozoic Episodes of Phosphogenesis Records in Equatorial Pacific Seamounts Deposits, Paleoceanography, 1993, vol. 8, no.2, pp. 293–311.

    Google Scholar 

  • Holland, H.D., The Chemical Evolution of the Atmosphere and Oceans, Prinston: Prinston Univ. Press, 1984.

    Google Scholar 

  • Honjo, S., Manganini, S.J., and Cole, J.J., Sedimentation of Biogenc Matter in the Deep Ocean, Deep-Sea Res., 1982, vol. 29, no.5, pp. 609–625.

    Google Scholar 

  • Ingall, E.D. and Jahnke, R., Evidence for Enhanced Phosphorus Regeneration from Marine Sediments Overlain by Oxygen Depleted Waters, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 303–316.

    Google Scholar 

  • Jahnke, R.A., Emerson, S.R., Roe, K.K., and Burnett, W.C., The Present Day Formation of Apatite in Mexican Continental Margin Sediments, Geochim. Cosmochim. Acta, 1983, vol. 47, pp. 259–266.

    Google Scholar 

  • Jensen, H.S., Mortensen, P.B., Andersen, F.O., et al., Phosphorus Cycling in a Coastal Marine Sediment, Aarhus Day, Denmark, Limnol. Oceanogr., 1995, vol. 40, pp. 908–917.

    Google Scholar 

  • Kester, D.R. and Pytkovicz, R.M., Determination of the Apparent Dissociation Constants of Phosphoric Acid in Sea-water, Limnol. Oceanogr., 1967, vol. 12, no.2, pp. 243–252.

    Google Scholar 

  • Khimiya okeana (Chemistry of the Ocean), vol. 1: Chemistry of the Oceanic Water, Bordovskii, O.K. and Ivanenkov, V.N., Eds., Moscow: Nauka, 1979.

    Google Scholar 

  • Kholodov, V.N., Vendian and Cambrian Metallogeny in Eyrasia. Communications I and II, Litol. Polezn. Iskop., 1970, no. 2, pp. 130–147; no. 4, pp. 29–44.

    Google Scholar 

  • Kholodov, V.N., Epochs of Phosphorite Formation and Biogeochemistry of Phosphorus, Litol. Polezn. Iskop., 1997, no. 6, pp. 563–577.

    Google Scholar 

  • Kim, D., Schuffert, J.D., and Kastner, M., Francolite Authigenesis in California Continental Slope Sediments and Its Implications for the Marine P Cycle, Geochim. Cosmochim. Acta, 1999, vol. 63, nos.19/20, pp. 3477–3485.

    Google Scholar 

  • Klump, J.V. and Martens, C.S., Biogeochemical Cycling in an Organic Rich Coastal Marine Basin. II. Nutrient Sediment-Water Exchange Processes, Geochim. Cosmochim. Acta, 1981, vol. 45, pp. 101–121.

    Google Scholar 

  • Knauer, G.A., Martin, J.H., and Bruland, K.W., Fluxes of Particulate Carbon, Nitrogen, and Phosphorus in the Upper Water Column of the Northwest Pacific, Deep-Sea Res., 1979, vol. 26, no.1, pp. 97–108.

    Google Scholar 

  • Koblents-Mishke, O.I., Kabanova, Yu.G., and Volkovinskii, V.V., New Data on the Volume of Primary Production in the World Ocean, Dokl. Akad. Nauk SSSR, 1968, vol. 183, no.5, pp. 1189–1192.

    Google Scholar 

  • Krom, M.D. and Berner, R.A., The Diagenesis of Phosphorus in a Nearshore Marine Sediment, Geochim. Cosmochim. Acta, 1981, vol. 45, pp. 207–216.

    Google Scholar 

  • Kurnosov, V.B., Gidrotermal'nye izmeneniya bazal'tov v Tikhom okeane i metallonosnye otlozheniya (Hydrothermal Alterations of Basalts in the Pacific Ocean and Metalliferous Sediments), Moscow: Nauka, 1986.

    Google Scholar 

  • Lisitsyn, A.P., Osadkoobrazovanie v okeanakh (Sedimentation in Oceans), Moscow: Nauka, 1974.

  • Lisitsyn, A.P., Protsessy okeanskoi sedimentatsii (Processes of the Oceanic Sedimentation), Moscow: Nauka, 1978.

    Google Scholar 

  • Lisitsyn, A.P., Paleooceanology, in Okeanologiya. Geologiya okeana. Geologicheskaya istoriya okeana (Oceanology. Ocean Geology: Geological History of the Ocean), Moscow: Nauka, 1980, pp. 386–405.

    Google Scholar 

  • Lukashin, V.N., Isaeva, A.B., Serova, V.V., and Nikonova, G.G., Geochemistry of Organic Matter and Its Flows in the Eastern Equatorial Atlantic, Geokhimiya, 2002, no. 3, pp. 306–318.

    Google Scholar 

  • Mach, D.M., Ramirez, A., and Holland, H.D., Organic Phosphorus and Carbon in Marine Sediments, Am. J. Sci., 1987, vol. 278, pp. 429–441.

    Google Scholar 

  • Mackenzie, F.T., Ver, L.M., Sabine, C., et al., C, N, P, S Global Biogeochemical Cycles and Modeling of Global Change, Interactions of C, N, P, and S Biogeochemical Cycles and Global Change, Wollast, R. et al., Eds., New York: Springer, 1993, pp. 1–61.

    Google Scholar 

  • Martens, C.S., Berner, R.A., and Rosenfeld, J.K., Interstitial Water Chemistry of Anoxic Long Island Sound Sediments. 2. Nutrient Regeneration and Phosphate Removal, Limnol. Oceanogr., 1978, vol. 23, no.4, pp. 601–617.

    Google Scholar 

  • Martin, J.M. and Meybeck, M., Elemental Mass-Balance of Material Carried by World Major Rivers, Mar. Chem., 1979, vol. 7, pp. 173–206.

    Google Scholar 

  • McNickol, A.P., Lee, C., and Druffel, E.R.M., Carbon Cycling in Coastal Sediments. I. A Quantitative Estimate of the Remineralization of Organic Carbon in the Sediments of the Buzzard Bay, MA, Geochim Cosmochim Acta, 1988, vol. 52, pp. 113–136.

    Google Scholar 

  • Meybeck, M., Carbon, Nitrogen, and Phosphorus Transport by World Rivers, Am. J. Sci., 1982, vol. 282, pp. 401–450.

    Google Scholar 

  • Milliman, J.D. and Meade, R.H., World-Wide Delivery of River Sediment to the Ocean, J. Geol., 1983, vol. 91, no.1, pp. 1–21.

    Google Scholar 

  • Moody, J.B., Chaboudy, L.R., and Worsley, T.R., Pacific Pelagic Posphorus Accumulation during the Last 10 M.Y., Paleoceanography, 1988, vol. 3, pp. 113–136.

    Google Scholar 

  • Nissenbaum, A., Presley, B., and Kaplan, I.R., Early Diagenesis in a Reducing Fjord, Saanich Inlet, British Columbia. 1. Chemical and Isotopic Changes in the Major Components of the Interstitial Water, Geochim. Cosmochim. Acta, 1972, vol. 36, no.9, pp. 1007–1027.

    Google Scholar 

  • Rabouille, C., Mackenzie, F.T., and Ver, L.M., Influence of Human Perturbation on Carbon, Nitrogen, and Oxygen Biogeochemical Cycles in the Global Coastal Ocean, Geochim. Cosmochim. Acta, 2001, vol. 65, no.21, pp. 3615–3645.

    Google Scholar 

  • Reimers, C.E., Ruttenberg, K.C., Canfield, D.E., et al., Pore-water pH and Authigenic Phases Formed in the Uppermost Sediments of the Santa Barbara Basin, Geochim. Cosmochim. Acta, 1996, vol. 60, no.21, pp. 4037–4057.

    Google Scholar 

  • Romankevich, E.A., Geokhimiya organicheskogo veshchestva v okeane (Geochemistry of Organic Matter in the Ocean), Moscow: Nauka, 1977.

    Google Scholar 

  • Romankevich, E.A., Vetrov, A.A., and Korneva, G.A., Geochemistry of Organic Carbon in the Ocean, Biogeochemical Cycling and Sediment Ecology, Gray, J.S., Ambrose, W., and Szaniawska, A., Eds., Dordrecht: Kluwer, 1999, pp. 1–27.

    Google Scholar 

  • Ronov, A.B., Osadochnaya obolochka Zemli (Sedimentary Cover of the Earth), Moscow: Nauka, 1960.

    Google Scholar 

  • Ronov, A.B., Stratisfera ili osadochnaya obolochka Zemli (Stratisphera or Sedimentary Cover of the Earth), Moscow: Nauka, 1993.

    Google Scholar 

  • Ronov, A.B. and Korzina, G.A., Phosphorus in Sedimentary Rocks, Geokhimiya, 1960, no. 8, pp. 667–687.

    Google Scholar 

  • Ronov, A.B., Yaroshevskii, A.A., and Migdisov, A.A., Khimicheskoe stroenie zemnoi kory i geokhimicheskii balans glavnykh elementov (Chemical Structure of the Earth's Crust and Geochemical Balance of Major Elements), Moscow: Nauka, 1990.

    Google Scholar 

  • Ruttenberg, K.C., Development of a Suquential Extraction Method for Different Forms of Phosphorus in Marine Sediments, Limnol. Oceanogr., 1992, vol. 37, pp. 1460–1482.

    Google Scholar 

  • Ruttenberg, K.C., Reassessment of the Oceanic Residence Time of Phosphorus, Chem. Geol., 1993, vol. 107, pp. 405–409.

    Google Scholar 

  • Ruttenberg, K.C. and Berner, R.A., Authigenic Apatite Formation and Burial in Sediments from Non-Upwelling, Continental Margin Sediments, Geochim. Cosmochim. Acta, 1993, vol. 57, pp. 991–1007.

    Google Scholar 

  • Ruttenberg, K.C. and Goni, M.F., Phosphorus Distribution, C: N: P Ratios, and o13Coc in Arctic, Temperate, and Tropical Coastal Sediments: Tools for Characterizing Bulk Sedimentary Organic Matter, Mar. Geol., 1997, vol. 139, pp. 123–145.

    Google Scholar 

  • Ryther, J.H., Photosynthesis and Fish Production in the Sea, Science, 1970, vol. 166, no.3901, pp. 72–76.

    Google Scholar 

  • Savenko, V.S., On Physicochemical Mechanism of the Formation of Marine Phosphorites, Dokl. Akad. Nauk SSSR, 1979, vol. 249, no.4, pp. 972–976.

    Google Scholar 

  • Savenko, V.S., Basic Regularities of the Phosphorus Behavior in Pore Waters of Marine and Oceanic Sediments, Litol. Polezn. Iskop., 1990, no. 5, pp. 33–49.

    Google Scholar 

  • Savenko, V.S., Is the Ocean a Source of Carbon Dioxide?, Geokhimiya, 1995, no. 11, pp. 1634–1642.

    Google Scholar 

  • Savenko, V.S., Global Hydrological Cycle and Geochemical Balance of Phosphorus in the Ocean, Okeanologiya, 2001, vol. 41, no.3, pp. 379–385.

    Google Scholar 

  • Savenko, V.S. and Zakharova, E.A., Phosphorus in the River Discharge, Dokl. Akad. Nauk, 1995, vol. 345, no.5, pp. 682–685.

    Google Scholar 

  • Savenko, V.S. and Zakharova, E.A., Basic Regularities of Phosphorus Behavior in the River Discharge, Vodn. Resursy, 1997, vol. 24, no.2, pp. 159–168.

    Google Scholar 

  • Schuffert, J.D., Jahnke, R.A., Kastner, M., et al., Rates of Formation of Modern Phosphorite off Western Mexico, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 5001–5010.

    Google Scholar 

  • Schuffert, J.D., Kastner, M., and Jahnke, R., Carbon and Phosphorus Burial Associated with Modern Phosphorite Formation, Mar. Geol., 1998, nos. 1–4, pp. 21–31.

    Google Scholar 

  • Sevast'yanova, E.S., Dispersed Phosphorus in the Recent Marine and Oceanic Sedimentary Basin, Extended Abstract of PhD (Geol.–Miner.) Dissertation, Moscow: Inst. Oceanol. Akad. Nauk SSSR, 1983.

    Google Scholar 

  • Shatsky, N.S., Phosphorus-Bearing Formations and Classification of Phosphorite Deposits, in Soveshchanie po osadochnym porodam (Conference on Sedimentary Rocks), Moscow: Akad. Nauk SSSR, 1955, issue 2, pp. 7–100.

    Google Scholar 

  • Shishkina, O.V., Biogenic Elements in Mud Waters and the Role of Exchange in the Transport of Phosphates into the Bottom Water, Dokl. Akad. Nauk SSSR, 1971, vol. 201, no.3, pp. 707–710.

    Google Scholar 

  • Sokolov, A.S., Phosphorus in the Stratisphere, Dokl. Akad. Nauk, 1995, vol. 344, no.3, pp. 370–373.

    Google Scholar 

  • Sokolov, A.S., Causes of the Activation of Vendian–Cambrian Phosphorite Formation, Dokl. Akad. Nauk, 1999, vol. 369, no.6, pp. 799–801.

    Google Scholar 

  • Sorokhtin, O.G. and Ushakov, S.A., Global'naya evolyutsiya Zemli (Global Evolution of the Earth), Moscow: Mosk. Gos. Univ., 1991.

    Google Scholar 

  • Sorokin, Yu.I., Ekosistema korallovykh rifov (Ecosystem of Coral Reefs), Moscow: Nauka, 1990.

    Google Scholar 

  • Steeman-Nielsen, E. and Jensen, A., Primary Oceanic Production of Organic Matter in the Oceans, Galathea Rep., 1957, vol. 1, pp. 49–136.

    Google Scholar 

  • Strakhov, N.M., Climate and Phosphate Accumulation, Geol. Rudn. Mestorzhd., 1960, no. 1, pp. 3–15.

    Google Scholar 

  • Strakhov, N.M., Tipy litogeneza i ikh evolyutsiya v istorii Zemli (Types of Lithogenesis and Their Evolution in the Earth's History), Moscow: Gosgeoltekhizdat, 1963.

    Google Scholar 

  • Tsunogai, S., Uematsu, M., Noriki, S., et al., Sediment Trap Experiment in the Western North Pacific, Geochem. J., 1982, vol. 16, no.3, pp. 129–147.

    Google Scholar 

  • Tunnicliff, V., Botros, M., De Burgh, M.E., et al., Hydrothermal Vents of Explorer Ridge, Northeast Pacific, Deep-Sea Res., 1986, vol. 33, no.3, pp. 401–412.

    Google Scholar 

  • Turekian, K.K. and Wedepohl, K.H., Distribution of the Elements in Some Major Units of the Earth's Crust, Bull. Geol. Soc. Am., 1961, vol. 72, no.1, pp. 175–192.

    Google Scholar 

  • Ushakov, S.A. and Yasamanov, N.A., Dreif kontinentov i klimaty Zemli (Drift of Continents in the Earth's History), Moscow: Mysl', 1984.

    Google Scholar 

  • Van Cappellen, P. and Ingall, E.D., Benthic Phosphorus Regeneration, Net Primary Production, and Ocean Anoxia: A Model of the Coupled Marine Biogeochemical Cycles of Carbon and Phosphorus, Paleoceanography, 1994, vol. 9, pp. 677–692.

    Google Scholar 

  • Vedernikov, V.I. and Starodubtsev, E.G., Primary Production and Chlorophyll in the Southeastern Pacific Ocean, Tr. Inst. Okeanol. Akad. Nauk SSSR, 1971, vol. 89, pp. 33–42.

    Google Scholar 

  • Vink, S., Chambers, R.M., and Smith, S.V., Distribution of Phosphorus in Sediments from Tomales Bay, California, Mar. Geol., 1997, vol. 139, pp. 157–179.

    Google Scholar 

  • Vinogradov, A.P., Average Content of Chemical Elements in Rocks, Geokhimiya, 1962, no. 7, pp. 555–571.

    Google Scholar 

  • Vinogradov, A.P., Vvedenie v geokhimiyu okeana (Introduction to Ocean Geochemistry), Moscow: Nauka, 1967.

    Google Scholar 

  • Vinogradov, M.E., Shushkina, E.A., Kopelevich, O.V., and Sheberstov, S.V., Photosynthetic Production of the World Ocean Based on Satellite and Field Data, Okeanologiya, 1996, vol. 36, no.4, pp. 566–575.

    Google Scholar 

  • Volkov, I.I. and Yagodinskaya, T.A., Transitional Group of Elements: Phosphorus, Rare Earth Elements, and Yttrium, Litologiya i geokhimiya osadkov Tikhogo okeana (Lithology and Geochemistry of Sediments in the Pacific Ocean), Kholodov, V.N., Ed., Moscow: Nauka, 1979, pp. 203–224.

    Google Scholar 

  • Volkov, I.I., Sevast'yanova, E.S., and Yagodinskaya, T.A., Phosphorus in Sediments of the Northwestern Pacific Ocean, Geokhimiya, 1974, no. 9, pp. 1297–1309.

    Google Scholar 

  • Wefer, G., Suess, E., Balzer, W., et al., Fluxes of Biogenic Components from Sediment Trap Deployment in Circum-Polar Waters of Drake Passage, Nature (London), 1982, vol. 299, no.5879, pp. 145–147.

    Google Scholar 

  • Wheate, C.G., Feely, R.A., and Mottle, M.J., Phosphate Removal by Oceanic Hydrothermal Processes: An Update of the Phosphorus Budget in the Oceans, Geochim. Cosmochim. Acta, 1996, vol. 60, pp. 3593–3608.

    Google Scholar 

  • Zaitseva, E.D., Alkalinity and Biogenic Elements in Ground Waters of the Northeastern Black Sea, K poznaniyu diageneza osadkov (The Congition of Sediment Diagenesis), Moscow: Akad. Nauk SSSR, 1959, pp. 51–71.

    Google Scholar 

  • Zanin, Yu.N., Climatic Aspects of the Evolution of Phosphate Accumulation in the Phanerozoic, Problemy evolyutsii geologicheskikh protsessov (Problems of the Evolution of Geological Processes), Bogolepov, K.V. and Zharkov, M.A., Eds., Novosibirsk: Nauka, 1981, pp. 122–133.

    Google Scholar 

  • Zanin, Yu.N., The Weathering and Phosphorite Genesis, Geol. Geofiz., 2001, vol. 42, no.4, pp. 589–595.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baturin, G.N. Phosphorus Cycle in the Ocean. Lithology and Mineral Resources 38, 101–119 (2003). https://doi.org/10.1023/A:1023499908601

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023499908601

Keywords

Navigation