Skip to main content
Log in

Super-Tree Random Measures

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We use supercritical branching processes with random walk steps of geometrically decreasing size to construct random measures. Special cases of our construction give close relatives of the super-(spherically symmetric stable) processes. However, other cases can produce measures with very smooth densities in any dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Dawson, D. A., (1992). Infinitely divisible random measures and superprocesses Proce. 1990 Workshop on Stoch. Anal. and Rel. Topics, Silivri, Turkey, Birkhauser.

    Google Scholar 

  2. Dawson, D. A. (1993). Measure-valued Markov processes. St. Flour Lecture Notes, springer Lecture Notes in Math., Vol. 141.

  3. Dawson, D. A., and Perkins, E. A. (1991). Historical Processes. Memoris of the AMS No. 454.

  4. Durrett, R. (1991). Probability: Theory and Examples. Wadsowrth Pub. Co., Belmont, California.

    Google Scholar 

  5. Ethier, S., and Kurtz, T. (1986). Markov Processes: Characterization and Convergence. John Wiley and Sons, New York.

    Google Scholar 

  6. Evans, S. N. (1988a). Continuity properties of Gaussian stochastic processes indexed by a local field. Proc. London. Math. Soc. 56, 380–416.

    Google Scholar 

  7. Evans, S. N. (1988b). Sample path properties of Gaussian stochastic processes indexed by a local field. Proc. London. Math. Soc. 56, 580–624.

    Google Scholar 

  8. Evans, S. N., and Perkins, E. A. (1991). Absolute continuity results for superprocesses with some applications. Trans. Am. Math. Soc. 325, 661–681.

    Google Scholar 

  9. Harris, T. E. (1963). Branching Processes. Springer-Verlag, New York.

    Google Scholar 

  10. Hawkes, J. (1981). Trees generated by a simple branching process. J. London Math. Soc. 24, 373–384.

    Google Scholar 

  11. Kallenberg, O. (1983). Random Measures. Third Edition. Akademie-Berlag, Berlin.

    Google Scholar 

  12. Konno, N., and Shiga, T. (1988). Stochastic differential equations for some measurevalued diffusions. Prob. Th. Rel. Fields. 79, 201–225.

    Google Scholar 

  13. Mandelbrot, B. (1982). The Fractal Geometry of Nature. W. H. Freeman, New York.

    Google Scholar 

  14. Reimers, M. (1989). One dimensional stochastic partial differential equations and the branching measure diffusion. Prob. Th. Rel. Fields 81, 319–340.

    Google Scholar 

  15. Roelly-Coppoletta, S. (1986). A criterion of convergence of measure-valued processes: application to measure-valued branching. Stochastics 17, 43–65.

    Google Scholar 

  16. Rudin, W. (1991). Functional Analysis. Second Edition. McGraw-Hill, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allouba, H., Durrett, R., Hawkes, J. et al. Super-Tree Random Measures. Journal of Theoretical Probability 10, 773–794 (1997). https://doi.org/10.1023/A:1022666030740

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022666030740

Navigation